File size: 5,383 Bytes
f1a0148
 
 
7fcb739
3c41269
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
19ae156
 
 
 
1edfb59
 
 
87f7c84
4172058
 
 
 
9e032ec
 
 
 
f1a0148
 
 
 
 
 
 
 
 
7fcb739
 
 
 
 
 
 
 
f1a0148
7fcb739
 
1edfb59
 
 
 
 
 
 
 
 
d25b36f
 
dab4429
1edfb59
 
 
7fcb739
 
1edfb59
 
 
 
 
 
 
 
 
 
dab4429
1edfb59
 
 
7fcb739
 
19ae156
 
dab4429
4172058
 
 
 
 
 
 
19ae156
 
4172058
19ae156
 
 
3c41269
19ae156
 
dab4429
4172058
dab4429
4172058
7fcb739
 
4172058
 
 
 
 
 
 
 
 
 
 
19ae156
 
 
7fcb739
 
9e032ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fcb739
f1a0148
 
58071a6
7fcb739
58071a6
7fcb739
58071a6
7fcb739
58071a6
7fcb739
58071a6
7fcb739
58071a6
 
 
f1a0148
 
f2186e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
from dotenv import load_dotenv
import random
from gradio_client import Client, handle_file,file

load_dotenv()

ZEROGPU_TOKENS = os.getenv("ZEROGPU_TOKENS", "").split(",")


def get_zerogpu_token():
    return random.choice(ZEROGPU_TOKENS)


model_mapping = {
    "spark-tts": {
        "provider": "spark",
        "model": "spark-tts",
    },
    "cosyvoice-2.0": {
        "provider": "cosyvoice",
        "model": "cosyvoice_2_0",
    },
    "index-tts": {
        "provider": "bilibili",
        "model": "index-tts",
    },
    "maskgct": {
        "provider": "amphion",
        "model": "maskgct",
    },
    "gpt-sovits-v2": {
        "provider": "gpt-sovits",
        "model": "gpt-sovits-v2",
    },
}
url = "https://tts-agi-tts-router-v2.hf.space/tts"
headers = {
    "accept": "application/json",
    "Content-Type": "application/json",
    "Authorization": f'Bearer {os.getenv("HF_TOKEN")}',
}
data = {"text": "string", "provider": "string", "model": "string"}

def set_client_for_session(space:str, user_token=None):
    if user_token is None:
        x_ip_token = get_zerogpu_token()
    else:
        x_ip_token = user_token

    # The "gradio/text-to-image" space is a ZeroGPU space
    return Client(space, headers={"X-IP-Token": x_ip_token})

def predict_index_tts(text, user_token=None, reference_audio_path=None):
    client = set_client_for_session("kemuriririn/IndexTTS",user_token=user_token)
    if reference_audio_path:
        prompt = handle_file(reference_audio_path)
    else:
        raise ValueError("index-tts ιœ€θ¦ reference_audio_path")
    result = client.predict(
        prompt=prompt,
        text=text,
        api_name="/gen_single"
    )
    if type(result) != str:
        result = result.get("value")
    print("index-tts result:", result)
    return result


def predict_spark_tts(text, user_token=None,reference_audio_path=None):
    client = set_client_for_session("kemuriririn/SparkTTS",user_token=user_token)
    prompt_wav = None
    if reference_audio_path:
        prompt_wav = handle_file(reference_audio_path)
    result = client.predict(
        text=text,
        prompt_text=text,
        prompt_wav_upload=prompt_wav,
        prompt_wav_record=prompt_wav,
        api_name="/voice_clone"
    )
    print("spark-tts result:", result)
    return result


def predict_cosyvoice_tts(text, user_token=None, reference_audio_path=None):
    client = set_client_for_session("kemuriririn/CosyVoice2-0.5B",user_token=user_token)
    if not reference_audio_path:
        raise ValueError("cosyvoice-2.0 ιœ€θ¦ reference_audio_path")
    prompt_wav = handle_file(reference_audio_path)
    # ε…ˆθ―†εˆ«ε‚θ€ƒιŸ³ι’‘ζ–‡ζœ¬
    recog_result = client.predict(
        prompt_wav=file(reference_audio_path),
        api_name="/prompt_wav_recognition"
    )
    print("cosyvoice-2.0 prompt_wav_recognition result:", recog_result)
    prompt_text = recog_result if isinstance(recog_result, str) else str(recog_result)
    result = client.predict(
        tts_text=text,
        prompt_text=prompt_text,
        prompt_wav_upload=prompt_wav,
        prompt_wav_record=prompt_wav,
        seed=0,
        stream=False,
        api_name="/generate_audio"
    )
    print("cosyvoice-2.0 result:", result)
    return result


def predict_maskgct(text, user_token=None, reference_audio_path=None):
    client = set_client_for_session("amphion/maskgct",user_token=user_token)
    if not reference_audio_path:
        raise ValueError("maskgct ιœ€θ¦ reference_audio_path")
    prompt_wav = handle_file(reference_audio_path)
    result = client.predict(
        prompt_wav=prompt_wav,
        target_text=text,
        target_len=-1,
        n_timesteps=25,
        api_name="/predict"
    )
    print("maskgct result:", result)
    return result


def predict_gpt_sovits_v2(text, user_token=None,reference_audio_path=None):
    client = set_client_for_session("kemuriririn/GPT-SoVITS-v2",user_token=user_token)
    if not reference_audio_path:
        raise ValueError("GPT-SoVITS-v2 ιœ€θ¦ reference_audio_path")
    result = client.predict(
        ref_wav_path=file(reference_audio_path),
        prompt_text="",
        prompt_language="English",
        text=text,
        text_language="English",
        how_to_cut="Slice once every 4 sentences",
        top_k=15,
        top_p=1,
        temperature=1,
        ref_free=False,
        speed=1,
        if_freeze=False,
        inp_refs=[],
        api_name="/get_tts_wav"
    )
    print("gpt-sovits-v2 result:", result)
    return result


def predict_tts(text, model, user_token=None, reference_audio_path=None):
    print(f"Predicting TTS for {model}")
    # Exceptions: special models that shouldn't be passed to the router
    if model == "index-tts":
        result = predict_index_tts(text, user_token,reference_audio_path)
    elif model == "spark-tts":
        result = predict_spark_tts(text, user_token,reference_audio_path)
    elif model == "cosyvoice-2.0":
        result = predict_cosyvoice_tts(text, user_token,reference_audio_path)
    elif model == "maskgct":
        result = predict_maskgct(text, user_token,reference_audio_path)
    elif model == "gpt-sovits-v2":
        result = predict_gpt_sovits_v2(text, user_token, reference_audio_path)
    else:
        raise ValueError(f"Model {model} not found")
    return result

if __name__ == "__main__":
    pass