Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,92 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from transformers import AutoImageProcessor,
|
4 |
-
|
5 |
-
|
6 |
-
import
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoImageProcessor,
|
4 |
+
AutoModelForDepthEstimation
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import cv2
|
8 |
+
|
9 |
+
class DepthEstimationAPI:
|
10 |
+
def __init__(self):
|
11 |
+
self.device = "cpu" # Hugging Face Spacesは無料版でCPUのみ
|
12 |
+
print(f"Using device: {self.device}")
|
13 |
+
|
14 |
+
model_name = "depth-anything/Depth-Anything-V2-Small-hf"
|
15 |
+
self.processor = AutoImageProcessor.from_pretrained(model_name)
|
16 |
+
self.model =
|
17 |
+
AutoModelForDepthEstimation.from_pretrained(model_name)
|
18 |
+
self.model.to(self.device)
|
19 |
+
self.model.eval()
|
20 |
+
print("Model loaded successfully")
|
21 |
+
|
22 |
+
def predict(self, image_input):
|
23 |
+
"""Process image and return depth map"""
|
24 |
+
if image_input is None:
|
25 |
+
return None, None
|
26 |
+
|
27 |
+
try:
|
28 |
+
# PILイメージに変換
|
29 |
+
if hasattr(image_input, 'convert'):
|
30 |
+
image = image_input.convert('RGB')
|
31 |
+
else:
|
32 |
+
image = Image.open(image_input).convert('RGB')
|
33 |
+
|
34 |
+
# サイズ調整(メモリ節約)
|
35 |
+
max_size = 256
|
36 |
+
if max(image.size) > max_size:
|
37 |
+
ratio = max_size / max(image.size)
|
38 |
+
new_size = tuple(int(dim * ratio) for dim in
|
39 |
+
image.size)
|
40 |
+
image = image.resize(new_size,
|
41 |
+
Image.Resampling.LANCZOS)
|
42 |
+
|
43 |
+
# 深度推定
|
44 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
outputs = self.model(**inputs)
|
48 |
+
depth = outputs.predicted_depth.squeeze().cpu().numpy()
|
49 |
+
|
50 |
+
# 深度マップ可視化
|
51 |
+
depth_normalized = ((depth - depth.min()) / (depth.max() -
|
52 |
+
depth.min()) * 255).astype(np.uint8)
|
53 |
+
depth_colored = cv2.applyColorMap(depth_normalized,
|
54 |
+
cv2.COLORMAP_VIRIDIS)
|
55 |
+
depth_colored = cv2.cvtColor(depth_colored,
|
56 |
+
cv2.COLOR_BGR2RGB)
|
57 |
+
depth_image = Image.fromarray(depth_colored)
|
58 |
+
|
59 |
+
return image, depth_image
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error in prediction: {e}")
|
63 |
+
return image_input, None
|
64 |
+
|
65 |
+
# APIインスタンス初期化
|
66 |
+
api = DepthEstimationAPI()
|
67 |
+
|
68 |
+
# Gradioインターフェース作成
|
69 |
+
with gr.Blocks(title="Depth Estimation API") as demo:
|
70 |
+
gr.Markdown("# 深度推定 API")
|
71 |
+
gr.Markdown("DepthAnything V2を使用したAI深度推定")
|
72 |
+
|
73 |
+
with gr.Row():
|
74 |
+
with gr.Column():
|
75 |
+
input_image = gr.Image(type="pil",
|
76 |
+
label="画像をアップロード")
|
77 |
+
submit_btn = gr.Button("深度マップ生成", variant="primary")
|
78 |
+
|
79 |
+
with gr.Column():
|
80 |
+
output_original = gr.Image(type="pil", label="元画像")
|
81 |
+
output_depth = gr.Image(type="pil", label="深度マップ")
|
82 |
+
|
83 |
+
# ボタンクリックで処理実行
|
84 |
+
submit_btn.click(
|
85 |
+
fn=api.predict,
|
86 |
+
inputs=[input_image],
|
87 |
+
outputs=[output_original, output_depth]
|
88 |
+
)
|
89 |
+
|
90 |
+
# Hugging Face Spaces用起動設定
|
91 |
+
if __name__ == "__main__":
|
92 |
+
demo.launch()
|