Spaces:
Runtime error
Runtime error
TK156
commited on
Commit
·
2e78bab
0
Parent(s):
feat: 深度推定Gradioアプリ
Browse files- Intel DPT-Hybrid-MiDaS
- メモリ最適化済み
- README.md +32 -0
- app.py +140 -0
- requirements.txt +7 -0
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Depth Estimation API
|
3 |
+
emoji: 🌊
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.44.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
# 深度推定・3D可視化 API
|
14 |
+
|
15 |
+
Intel DPT-Hybrid-MiDaSモデルを使用した深度推定アプリケーションです。
|
16 |
+
|
17 |
+
## 機能
|
18 |
+
|
19 |
+
- 画像から深度マップを生成
|
20 |
+
- リアルタイム処理
|
21 |
+
- 直感的なWebインターフェース
|
22 |
+
|
23 |
+
## 使用モデル
|
24 |
+
|
25 |
+
- Intel/dpt-hybrid-midas (Transformers)
|
26 |
+
|
27 |
+
## 技術スタック
|
28 |
+
|
29 |
+
- Gradio (Web UI)
|
30 |
+
- PyTorch (Deep Learning)
|
31 |
+
- Transformers (Hugging Face)
|
32 |
+
- OpenCV (画像処理)
|
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
7 |
+
import cv2
|
8 |
+
|
9 |
+
# グローバル変数でモデルを保持
|
10 |
+
processor = None
|
11 |
+
model = None
|
12 |
+
|
13 |
+
def load_model():
|
14 |
+
"""モデルを一度だけ読み込む"""
|
15 |
+
global processor, model
|
16 |
+
if processor is None or model is None:
|
17 |
+
print("Loading depth estimation model...")
|
18 |
+
processor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
|
19 |
+
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas")
|
20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
model.to(device)
|
22 |
+
model.eval()
|
23 |
+
print(f"Model loaded on {device}")
|
24 |
+
|
25 |
+
def estimate_depth(image):
|
26 |
+
"""深度推定を実行"""
|
27 |
+
try:
|
28 |
+
# モデル読み込み
|
29 |
+
load_model()
|
30 |
+
|
31 |
+
# 画像の前処理
|
32 |
+
if isinstance(image, str):
|
33 |
+
image = Image.open(image)
|
34 |
+
elif isinstance(image, np.ndarray):
|
35 |
+
image = Image.fromarray(image)
|
36 |
+
|
37 |
+
# RGB変換
|
38 |
+
if image.mode != 'RGB':
|
39 |
+
image = image.convert('RGB')
|
40 |
+
|
41 |
+
# サイズ制限(メモリ効率のため)
|
42 |
+
max_size = 512
|
43 |
+
if max(image.size) > max_size:
|
44 |
+
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
45 |
+
|
46 |
+
# 推論実行
|
47 |
+
inputs = processor(images=image, return_tensors="pt")
|
48 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
49 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
50 |
+
|
51 |
+
with torch.no_grad():
|
52 |
+
outputs = model(**inputs)
|
53 |
+
predicted_depth = outputs.predicted_depth
|
54 |
+
|
55 |
+
# 深度マップの後処理
|
56 |
+
depth = predicted_depth.squeeze().cpu().numpy()
|
57 |
+
depth_min = depth.min()
|
58 |
+
depth_max = depth.max()
|
59 |
+
|
60 |
+
if depth_max - depth_min > 0:
|
61 |
+
depth_normalized = (depth - depth_min) / (depth_max - depth_min)
|
62 |
+
else:
|
63 |
+
depth_normalized = np.zeros_like(depth)
|
64 |
+
|
65 |
+
# カラーマップ適用
|
66 |
+
depth_colored = cv2.applyColorMap(
|
67 |
+
(depth_normalized * 255).astype(np.uint8),
|
68 |
+
cv2.COLORMAP_VIRIDIS
|
69 |
+
)
|
70 |
+
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
|
71 |
+
|
72 |
+
return Image.fromarray(depth_colored), image
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
print(f"Error in depth estimation: {e}")
|
76 |
+
# エラー時は元画像をそのまま返す
|
77 |
+
return image, image
|
78 |
+
|
79 |
+
def process_image(image):
|
80 |
+
"""Gradio用の処理関数"""
|
81 |
+
if image is None:
|
82 |
+
return None, None
|
83 |
+
|
84 |
+
depth_map, original = estimate_depth(image)
|
85 |
+
return original, depth_map
|
86 |
+
|
87 |
+
# Gradio インターフェース作成
|
88 |
+
with gr.Blocks(title="深度推定 API", theme=gr.themes.Soft()) as demo:
|
89 |
+
gr.Markdown("# 🌊 深度推定・3D可視化 API")
|
90 |
+
gr.Markdown("画像をアップロードして深度マップを生成します")
|
91 |
+
|
92 |
+
with gr.Row():
|
93 |
+
with gr.Column():
|
94 |
+
input_image = gr.Image(
|
95 |
+
label="入力画像",
|
96 |
+
type="pil",
|
97 |
+
height=400
|
98 |
+
)
|
99 |
+
submit_btn = gr.Button("深度推定実行", variant="primary", size="lg")
|
100 |
+
|
101 |
+
with gr.Column():
|
102 |
+
with gr.Tab("元画像"):
|
103 |
+
output_original = gr.Image(label="元画像", height=400)
|
104 |
+
with gr.Tab("深度マップ"):
|
105 |
+
output_depth = gr.Image(label="深度マップ", height=400)
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
gr.Markdown("""
|
109 |
+
### 📝 使い方
|
110 |
+
1. 画像をアップロードまたはドラッグ&ドロップ
|
111 |
+
2. 「深度推定実行」ボタンをクリック
|
112 |
+
3. 深度マップが生成されます(紫=近い、黄=遠い)
|
113 |
+
|
114 |
+
### ⚡ 技術情報
|
115 |
+
- モデル: Intel DPT-Hybrid-MiDaS
|
116 |
+
- 処理時間: 数秒〜数十秒
|
117 |
+
- 最大解像度: 512px(メモリ効率のため)
|
118 |
+
""")
|
119 |
+
|
120 |
+
# イベントハンドラー
|
121 |
+
submit_btn.click(
|
122 |
+
fn=process_image,
|
123 |
+
inputs=[input_image],
|
124 |
+
outputs=[output_original, output_depth]
|
125 |
+
)
|
126 |
+
|
127 |
+
# サンプル画像も処理可能
|
128 |
+
input_image.change(
|
129 |
+
fn=process_image,
|
130 |
+
inputs=[input_image],
|
131 |
+
outputs=[output_original, output_depth]
|
132 |
+
)
|
133 |
+
|
134 |
+
# アプリケーション起動
|
135 |
+
if __name__ == "__main__":
|
136 |
+
demo.launch(
|
137 |
+
server_name="0.0.0.0",
|
138 |
+
server_port=7860,
|
139 |
+
share=True
|
140 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
transformers
|
4 |
+
opencv-python
|
5 |
+
pillow
|
6 |
+
numpy
|
7 |
+
gradio
|