MMEB-Leaderboard / utils_v2.py
MINGYISU's picture
major update (#46)
6ae8aba verified
import json
import os
import pandas as pd
from utils import create_hyperlinked_names
def sum_lst(lst):
assert isinstance(lst, list) and lst, f"Input should be a non-empty list, got {type(lst)}, size {len(lst)}"
total = lst[0]
for item in lst[1:]:
assert isinstance(item, (list, int, float)), f"Expected types are list and numbers, got {type(item)}"
total += item
return total
SCORE_BASE_DIR = "Scores"
META_DATA = ["model_name", "model_size", "url"]
DATASETS = {
"image": {
"I-CLS": ['VOC2007', 'N24News', 'SUN397', 'ObjectNet', 'Country211', 'Place365', 'ImageNet-1K', 'HatefulMemes', 'ImageNet-A', 'ImageNet-R'],
"I-QA": ['OK-VQA', 'A-OKVQA', 'DocVQA', 'InfographicsVQA', 'ChartQA', 'Visual7W-Pointing', 'ScienceQA', 'GQA', 'TextVQA', 'VizWiz'],
"I-RET": ['VisDial', 'CIRR', 'VisualNews_t2i', 'VisualNews_i2t', 'MSCOCO_t2i', 'MSCOCO_i2t', 'NIGHTS', 'WebQA', 'FashionIQ', 'Wiki-SS-NQ', 'OVEN', 'EDIS'],
"I-VG": ['MSCOCO', 'RefCOCO', 'RefCOCO-Matching', 'Visual7W']
},
"visdoc": {
"VisDoc": ['ViDoRe_arxivqa', 'ViDoRe_docvqa', 'ViDoRe_infovqa', 'ViDoRe_tabfquad', 'ViDoRe_tatdqa', 'ViDoRe_shiftproject', 'ViDoRe_syntheticDocQA_artificial_intelligence', 'ViDoRe_syntheticDocQA_energy', 'ViDoRe_syntheticDocQA_government_reports', 'ViDoRe_syntheticDocQA_healthcare_industry', 'VisRAG_ArxivQA', 'VisRAG_ChartQA', 'VisRAG_MP-DocVQA', 'VisRAG_SlideVQA', 'VisRAG_InfoVQA', 'VisRAG_PlotQA', 'ViDoSeek-page', 'ViDoSeek-doc', 'MMLongBench-page', 'MMLongBench-doc']
},
"video": {
"V-CLS": ['K700', 'UCF101', 'HMDB51', 'SmthSmthV2', 'Breakfast'],
"V-QA": ['Video-MME', 'MVBench', 'NExTQA', 'EgoSchema'],
"V-RET": ['MSR-VTT', 'MSVD', 'DiDeMo', 'VATEX', 'YouCook2'],
"V-MRET": ['QVHighlight', 'Charades-STA', 'MomentSeeker', 'ActivityNetQA']
}
}
ALL_DATASETS_SPLITS = {k: sum_lst(list(v.values())) for k, v in DATASETS.items()}
ALL_DATASETS = sum_lst(list(ALL_DATASETS_SPLITS.values()))
MODALITIES = list(DATASETS.keys())
SPECIAL_METRICS = {
'__default__': 'hit@1',
}
BASE_COLS = ['Rank', 'Models', 'Model Size(B)']
TASKS = ["Overall", "Image-Overall", "I-CLS", "I-QA", "I-RET", "I-VG", "VisDoc", "Video-Overall", "V-CLS", "V-QA", "V-RET", "V-MRET"]
COLUMN_NAMES = BASE_COLS + TASKS
DATA_TITLE_TYPE = ['number', 'markdown', 'str', 'markdown'] + \
['number'] * len(TASKS)
TABLE_INTRODUCTION = """"""
LEADERBOARD_INFO = """
## Dataset Summary
"""
CITATION_BUTTON_TEXT = r""""""
def load_single_json(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
return data
def load_data(base_dir=SCORE_BASE_DIR):
all_data = []
for file_name in os.listdir(base_dir):
if file_name.endswith('-scores_report.json'):
file_path = os.path.join(base_dir, file_name)
data = load_single_json(file_path)
all_data.append(data)
return all_data
def calculate_score(raw_scores=None):
"""This function calculates the overall average scores for all datasets as well as avg scores for each modality and sub-task based on the raw scores.
Algorithm summary:
"""
def get_avg(sum_score, leng):
avg = sum_score / leng if leng > 0 else 0.0
avg = round(avg, 2) # Round to 2 decimal places
return avg
avg_scores = {}
overall_scores_summary = {} # Stores the scores sum and length for each modality and all datasets
for modality, datasets_list in DATASETS.items(): # Ex.: ('image', {'I-CLS': [...], 'I-QA': [...]})
overall_scores_summary[modality] = (0.0, 0) # Initialize the sum and count for each modality
for sub_task, datasets in datasets_list.items(): # Ex.: ('I-CLS', ['VOC2007', 'N24News', ...])
sub_task_sum_score, sub_task_datasets_len = 0.0, len(datasets)
for dataset in datasets: # Ex.: 'VOC2007'
score = raw_scores.get(modality, {}).get(dataset, 0.0)
score = 0.0 if score == "FILE_N/A" else score
metric = SPECIAL_METRICS.get(dataset, 'hit@1')
if isinstance(score, dict):
score = score.get(metric, 0.0)
sub_task_sum_score += score
sub_task_overall = get_avg(sub_task_sum_score, sub_task_datasets_len)
avg_scores[sub_task] = sub_task_overall
# Accumulate the scores sum and length for the each modality
modality_sum_score, modality_datasets_len = overall_scores_summary[modality]
modality_sum_score += sub_task_sum_score
modality_datasets_len += sub_task_datasets_len
overall_scores_summary[modality] = (modality_sum_score, modality_datasets_len)
all_datasets_sum_score, all_datasets_len = 0.0, 0
for modality, (modality_sum_score, modality_datasets_len) in overall_scores_summary.items():
name = f"{modality.capitalize()}-Overall"
avg_scores[name] = get_avg(modality_sum_score, modality_datasets_len)
# Accumulate the scores sum and length for all datasets
all_datasets_sum_score += modality_sum_score
all_datasets_len += modality_datasets_len
avg_scores['Overall'] = get_avg(all_datasets_sum_score, all_datasets_len)
return avg_scores
def generate_model_row(data):
metadata = data['metadata']
row = {
'Models': metadata.get('model_name', None),
'Model Size(B)': metadata.get('model_size', None),
'URL': metadata.get('url', None)
}
scores = calculate_score(data['metrics'])
row.update(scores)
return row
def get_df():
"""Generates a DataFrame from the loaded data."""
all_data = load_data()
rows = [generate_model_row(data) for data in all_data]
df = pd.DataFrame(rows)
df = df.sort_values(by='Overall', ascending=False).reset_index(drop=True)
df['Rank'] = range(1, len(df) + 1)
df = create_hyperlinked_names(df)
return df
def refresh_data():
df = get_df()
return df[COLUMN_NAMES]
def search_and_filter_models(df, query, min_size, max_size):
filtered_df = df.copy()
if query:
filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)]
size_mask = filtered_df['Model Size(B)'].apply(lambda x:
(min_size <= 1000.0 <= max_size) if x == 'unknown'
else (min_size <= x <= max_size))
filtered_df = filtered_df[size_mask]
return filtered_df[COLUMN_NAMES]