File size: 6,607 Bytes
e718856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import logging
from semantic_kernel import Kernel
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
from semantic_kernel.functions import kernel_function
from azure.cosmos import CosmosClient
from semantic_kernel.connectors.ai.open_ai.prompt_execution_settings.azure_chat_prompt_execution_settings import (
    AzureChatPromptExecutionSettings,
)
from semantic_kernel.connectors.ai.function_choice_behavior import FunctionChoiceBehavior
from models.converterModels import PowerConverter  

import os
from dotenv import load_dotenv
load_dotenv()

logger = logging.getLogger("kernel")
logger.setLevel(logging.DEBUG)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter(
    "[%(asctime)s - %(name)s:%(lineno)d - %(levelname)s] %(message)s"
))
logger.addHandler(handler)


# Initialize Semantic Kernel
kernel = Kernel()

# Add Azure OpenAI Chat Service
kernel.add_service(AzureChatCompletion(
    service_id="chat",
    deployment_name=os.getenv("AZURE_OPENAI_DEPLOYMENT_NAME"),
    endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
    api_key=os.getenv("AZURE_OPENAI_KEY")
))

# Database Plugin
class CosmosDBPlugin:
    def __init__(self):
        self.client = CosmosClient(
            os.getenv("AZURE_COSMOS_DB_ENDPOINT"),
            os.getenv("AZURE_COSMOS_DB_KEY")
        )
        self.database = self.client.get_database_client("TAL_DB")
        self.container = self.database.get_container_client("Converters")
        self.logger = logger

    @kernel_function(
        name="query_converters",
        description="Execute SQL query against Cosmos DB converters collection"
    )
    async def query_converters(self, query: str) -> str:
        try:
            print(f"Executing query: {query}")
            items = list(self.container.query_items(
                query=query,
                enable_cross_partition_query=True
            ))
            print(f"Query returned {len(items)} items")
            items = items[:10] 
            self.logger.debug(f"Raw items: {items}")

            items = [PowerConverter(**item) for item in items] if items else []

            self.logger.info(f"Query returned {len(items)} items after conversion")
            self.logger.debug(f"Items: {items}")

            

            return str(items)
        except Exception as e:
            self.logger.info(f"Query failed: {str(e)}")
            return f"Query failed: {str(e)}"

# SQL Generation Plugin
class NL2SQLPlugin:
    @kernel_function(name="generate_sql", description="Generate Cosmos DB SQL query")
    async def generate_sql(self, question: str) -> str:
        sql = await self._generate_sql_helper(question)
        if "SELECT *" not in sql and "FROM c" in sql:
            sql = sql.replace("SELECT c.*", "SELECT *")
            sql = sql.replace("SELECT c", "SELECT *")
        return sql

    async def _generate_sql_helper(self, question: str) -> str:
        from semantic_kernel.contents import ChatHistory
        
        chat_service = kernel.get_service("chat")
        chat_history = ChatHistory()
        chat_history.add_user_message(f"""Convert to Cosmos DB SQL: {question}
            Collection: converters (alias 'c')
            Fields:
                - type (e.g., '350mA')
                - artnr (numeric (int) article number e.g., 930546)
                - output_voltage_v: dictionary with min/max values for output voltage
                - output_voltage_v.min (e.g., 15)
                - output_voltage_v.max (e.g., 40)
                - input_voltage_v: dictionary with min/max values for input voltage
                - input_voltage_v.min (e.g., 198)
                - input_voltage_v.max (e.g., 264)
                - lamps: dictionary with min/max values for lamp types for this converter
                - lamps["lamp_name"].min (e.g., 1)
                - lamps["lamp_name"].max (e.g., 10)
                - nom_input_voltage (e.g, '198-264V')
                - class (safety class)
                - dimmability (e.g., 'MAINS DIM LC')
                - listprice (e.g., 58)
                - lifecycle (e.g., 'Active')
                - size (e.g., '150x30x30')
                - dimlist_type (e.g., 'DALI')
                - pdf_link (link to product PDF)
                - converter_description (e.g., 'POWERLED CONVERTER REMOTE 180mA 8W IP20 1-10V')
                - ip (Ingress Protection, integer values e.g., 20,67)
                - efficiency_full_load (e.g., 0.9)
                - name (e.g., 'Power Converter 350mA')
                - unit (e.g., 'PC')
            Return ONLY SQL without explanations""")
        
        response = await chat_service.get_chat_message_content(
            chat_history=chat_history,
            settings=AzureChatPromptExecutionSettings()
        )
        
        return str(response)
    

# Register plugins
kernel.add_plugin(CosmosDBPlugin(), "CosmosDBPlugin")
kernel.add_plugin(NL2SQLPlugin(), "NL2SQLPlugin")

# Updated query handler using function calling
async def handle_query(user_input: str):
    
    settings = AzureChatPromptExecutionSettings(
            function_choice_behavior=FunctionChoiceBehavior.Auto(auto_invoke=True)        
        )
    
    prompt = f"""
    You are a converter database expert. Process this user query:
    {user_input}
    
    Available functions:
    - generate_sql: Creates SQL queries from natural language
    - query_converters: Executes SQL queries against the database
    
    Follow these steps:
    1. Generate SQL using generate_sql
    2. Execute query with query_converters
    3. Format results into natural language response

    Query Guidelines:
    1. When performing SELECT ALL queries always use SELECT *. Never use SELECT c.* or SELECT c
    2. For questions about lamp compatibility, ALWAYS use SELECT * FROM c WHERE IS_DEFINED(c.lamps["lamp_name"])
    3. For questions about lamps that can be used with a converter, ALWAYS use SELECT c.lamps FROM c WHERE c.artnr = @artnr
    5. For questions about lamp limits, query for the lamps dictionary and return min/max values

    """
    
    result = await kernel.invoke_prompt(
        prompt=prompt,
        settings=settings
    )
    
    return str(result)

# Example usage
async def main():

   while True:
        try:
            query = input("User: ")
            if query.lower() in ["exit", "quit"]:
                break

            response = await handle_query(query)
            print(response)
            
        except KeyboardInterrupt:
            break

if __name__ == "__main__":
    import asyncio
    asyncio.run(main())