Spaces:
Sleeping
Sleeping
File size: 34,286 Bytes
46c9c21 a4e7127 259919c 46c9c21 259919c 46c9c21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 |
import os
import json
import re
import gradio as gr
from transformers import pipeline, AutoTokenizer
from langchain_core.documents import Document
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_core.prompts import ChatPromptTemplate
from typing import List, TypedDict
from langgraph.graph import StateGraph, START
from dotenv import load_dotenv
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from huggingface_hub import login
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
# --- Configuration ---
load_dotenv()
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
model_name = "Sathvika-Alla/TAL-RAGFallback"
# Load the model and tokenizer
llm_model = GPT2LMHeadModel.from_pretrained(model_name, token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
llm_tokenizer = GPT2Tokenizer.from_pretrained(model_name, token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
llm_tokenizer.pad_token = llm_tokenizer.eos_token
file_path = "./converters_with_links_and_pricelist.json"
try:
with open(file_path, 'r', encoding='utf-8') as f:
product_data = json.load(f)
except Exception as e:
print(f"Error loading product data: {e}")
product_data = {}
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
tokenizer.truncation_side = "left"
max_length = tokenizer.model_max_length
docs = [Document(page_content=str(value), metadata={"source": key}) for key, value in product_data.items()]
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vector_store = FAISS.from_documents(docs, embeddings)
chatbot = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
# --- Helper Functions ---
def parse_float(s):
try:
if isinstance(s, (list, tuple)):
s = s[0]
return float(str(s).replace(',', '.').strip())
except Exception:
return float('inf')
def parse_price(val):
if isinstance(val, float) or isinstance(val, int):
return float(val)
try:
return float(str(val).replace(',', '.'))
except Exception:
return float('inf')
def normalize_artnr(artnr):
try:
return str(int(float(artnr)))
except Exception:
return str(artnr)
def normalize_ip(ip):
if isinstance(ip, (int, float)):
return f"IP{int(ip)}"
elif isinstance(ip, str):
ip_part = ip.replace("IP", "").split(".")[0]
return f"IP{ip_part}"
else:
return "N/A"
def get_product_by_artnr(artnr, tech_info):
artnr_str = normalize_artnr(artnr)
for value in tech_info.values():
if normalize_artnr(value.get("ARTNR", "")) == artnr_str:
return value
return None
def extract_converter_and_lamp(user_message: str):
match = re.search(r"how many (\w+) lamps?.*converter (\d+)", user_message.lower())
if match:
lamp_name = match.group(1)
converter_number = match.group(2)
return lamp_name, converter_number
return None, None
def get_technical_fit_info(product_data: dict) -> dict:
results = {}
for key, value in product_data.items():
results[key] = {
"TYPE": value.get("TYPE", "N/A"),
"ARTNR": value.get("ARTNR", "N/A"),
"CONVERTER DESCRIPTION": value.get("CONVERTER DESCRIPTION:", "N/A"),
"STRAIN RELIEF": value.get("STRAIN RELIEF", "N/A"),
"LOCATION": value.get("LOCATION", "N/A"),
"DIMMABILITY": value.get("DIMMABILITY", "N/A"),
"EFFICIENCY": value.get("EFFICIENCY @full load", "N/A"),
"OUTPUT VOLTAGE": value.get("OUTPUT VOLTAGE (V)", "N/A"),
"INPUT VOLTAGE": value.get("NOM. INPUT VOLTAGE (V)", "N/A"),
"SIZE": value.get("SIZE: L*B*H (mm)", "N/A"),
"WEIGHT": value.get("Gross Weight", "N/A"),
"Listprice": value.get("Listprice", "N/A"),
"LAMPS": value.get("lamps", {}),
"PDF_LINK": value.get("pdf_link", "N/A"),
"IP": value.get("IP", "N/A"),
"CLASS": value.get("CLASS", "N/A"),
"LifeCycle": value.get("LifeCycle", "N/A"),
"Name": value.get("Name", "N/A"),
}
return results
tech_info = get_technical_fit_info(product_data)
def recommend_converters_for_lamp(lamp_query, tech_info):
def normalize(s):
# Lowercase, remove commas and dots, strip spaces
return s.lower().replace(",", "").replace(".", "").strip()
norm_query = normalize(lamp_query)
query_words = set(norm_query.split())
results = []
for v in tech_info.values():
lamps = v.get("LAMPS", {})
for lamp_name, lamp_data in lamps.items():
norm_lamp = normalize(lamp_name)
lamp_words = set(norm_lamp.split())
# Match if all query words are in lamp name OR query is a substring of lamp name OR lamp name is a substring of query
if (
query_words.issubset(lamp_words)
or norm_query in norm_lamp
or norm_lamp in norm_query
):
min_val = lamp_data.get("min", "N/A")
max_val = lamp_data.get("max", "N/A")
desc = v.get("CONVERTER DESCRIPTION", v.get("CONVERTER DESCRIPTION:", "N/A")).strip()
artnr = v.get("ARTNR", "N/A")
results.append(f"{desc} (ARTNR: {int(float(artnr)) if artnr != 'N/A' else 'N/A'}), supports {min_val} to {max_val} x \"{lamp_name}\"")
if not results:
return f"Sorry, I couldn't find a converter for '{lamp_query}'."
return "Recommended converters:\n" + "\n".join(results)
def get_lamp_quantity(converter_number: str, lamp_name: str, tech_info: dict) -> str:
v = get_product_by_artnr(converter_number, tech_info)
if not v:
return f"Sorry, I could not find converter {converter_number}."
for lamp_key, lamp_vals in v["LAMPS"].items():
if lamp_name.lower() in lamp_key.lower():
min_val = lamp_vals.get("min", "N/A")
max_val = lamp_vals.get("max", "N/A")
if min_val == max_val:
return f"You can use {min_val} {lamp_key} lamp(s) with converter {converter_number}."
else:
return f"You can use between {min_val} and {max_val} {lamp_key} lamp(s) with converter {converter_number}."
return f"Sorry, no data found for lamp '{lamp_name}' with converter {converter_number}."
def get_recommended_converter_any(user_message, tech_info):
match = re.search(r'(\d+)\s*x\s*([\w\d\s\-,.*]+)', user_message, re.IGNORECASE)
if not match:
return None
num_lamps = int(match.group(1))
lamp_query = match.group(2).strip().lower()
candidates = []
for v in tech_info.values():
for lamp, vals in v["LAMPS"].items():
lamp_norm = lamp.lower().replace(',', '.')
if all(word in lamp_norm for word in lamp_query.split()):
max_lamps = float(str(vals.get("max", 0)).replace(',', '.'))
if max_lamps >= num_lamps:
candidates.append((v, lamp, max_lamps))
if not candidates:
return f"Sorry, I couldn't find a converter that supports {num_lamps}x {lamp_query.title()}."
else:
return "\n".join([
f"You can use {v['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(v['ARTNR'])}) for {num_lamps}x {lamp_query.title()} (max supported: {max_lamps} for '{lamp}')."
for v, lamp, max_lamps in candidates
])
def answer_technical_question(question: str, tech_info: dict) -> str:
q = question.lower()
# --- Lamp-only queries like "Which converter should I use for 'LEDLINE medium power 9.6W' strips?" ---
lamp_match = re.search(
r'(?:for|recommend|use|need)[\s:]*["“”\']?([a-zA-Z0-9 ,.\-]+w)[\s"”\']*(?:strips?|ledline|lamps?)?', q
)
if lamp_match:
lamp_query = lamp_match.group(1).strip()
result = recommend_converters_for_lamp(lamp_query, tech_info)
if result and "couldn't find" not in result:
return result
# Fallback: match any lamp in the database if all its words are in the question
def normalize_lamp_string(s):
return set(s.lower().replace(",", "").replace(".", "").split())
q_words = set(q.replace(",", "").replace(".", "").split())
for v in tech_info.values():
for lamp_name in v.get("LAMPS", {}):
lamp_words = normalize_lamp_string(lamp_name)
if lamp_words and lamp_words.issubset(q_words):
result = recommend_converters_for_lamp(lamp_name, tech_info)
if result and "couldn't find" not in result:
return result
def answer_technical_question(question: str, tech_info: dict) -> str:
q = question.lower()
# Try to extract lamp name after 'for', 'recommend', 'use', etc.
lamp_match = re.search(
r'(?:for|recommend|use|need)[\s:]*["“”\']?([a-zA-Z0-9 ,.\-]+w)[\s"”\']*(?:strips?|ledline|lamps?)?', q
)
if lamp_match:
lamp_query = lamp_match.group(1).strip()
result = recommend_converters_for_lamp(lamp_query, tech_info)
if result and "couldn't find" not in result:
return result
# Fallback: match any lamp in the database if all its words are in the question
def normalize_lamp_string(s):
return set(s.lower().replace(",", "").replace(".", "").split())
q_words = set(q.replace(",", "").replace(".", "").split())
for v in tech_info.values():
for lamp_name in v.get("LAMPS", {}):
lamp_words = normalize_lamp_string(lamp_name)
if lamp_words and lamp_words.issubset(q_words):
result = recommend_converters_for_lamp(lamp_name, tech_info)
if result and "couldn't find" not in result:
return result
# Efficiency at full load for all converters
if "efficiency at full load for each converter" in q or "efficiency for each converter" in q:
result = []
for v in tech_info.values():
description = v.get("CONVERTER DESCRIPTION", "N/A").strip()
efficiency = v.get("EFFICIENCY", "N/A")
result.append(f"{description}: {efficiency}")
return "\n".join(result)
# Generalized lamp fit for any type in the database
if re.search(r"\d+\s*x\s*[\w\d\s\-,.*]+", q):
result = get_recommended_converter_any(question, tech_info)
if result:
return result
# Outdoor installation
if "outdoor" in q:
return "\n".join([f"{v['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(v['ARTNR'])})"
for v in tech_info.values()
if "outdoor" in v["LOCATION"].lower() or "in&outdoor" in v["LOCATION"].lower()])
# Most efficient converter for any type
if "most efficient" in q:
type_match = re.search(r'(\d+\s*v|\d+\s*ma)', q)
if type_match:
search_type = type_match.group(1).replace(' ', '').lower()
candidates = [
v for v in tech_info.values()
if search_type in str(v["TYPE"]).replace(' ', '').lower()
and str(v.get("EFFICIENCY", v.get("EFFICIENCY @full load", ""))).replace(',', '.').replace('.', '').isdigit()
]
if not candidates:
return f"No {search_type.upper()} converters found."
best = max(
candidates,
key=lambda x: float(str(x.get("EFFICIENCY", x.get("EFFICIENCY @full load", "0"))).replace(',', '.'))
)
desc = best.get("CONVERTER DESCRIPTION", best.get("CONVERTER DESCRIPTION:", "N/A")).strip()
artnr = int(float(best.get("ARTNR", "N/A"))) if best.get("ARTNR") else "N/A"
eff = best.get("EFFICIENCY", best.get("EFFICIENCY @full load", "N/A"))
return f"The most efficient {search_type.upper()} converter is {desc} (ARTNR: {artnr}) with efficiency {eff}."
else:
# fallback: show most efficient overall
candidates = [
v for v in tech_info.values()
if str(v.get("EFFICIENCY", v.get("EFFICIENCY @full load", ""))).replace(',', '.').replace('.', '').isdigit()
]
if not candidates:
return "No converters with efficiency data found."
best = max(
candidates,
key=lambda x: float(str(x.get("EFFICIENCY", x.get("EFFICIENCY @full load", "0"))).replace(',', '.'))
)
desc = best.get("CONVERTER DESCRIPTION", best.get("CONVERTER DESCRIPTION:", "N/A")).strip()
artnr = int(float(best.get("ARTNR", "N/A"))) if best.get("ARTNR") else "N/A"
eff = best.get("EFFICIENCY", best.get("EFFICIENCY @full load", "N/A"))
return f"The most efficient converter overall is {desc} (ARTNR: {artnr}) with efficiency {eff}."
# Dimming support
if "dimmable" in q or "dimming" in q or "1-10v" in q or "dali" in q or "casambi" in q or "touchdim" in q:
type_match = re.search(r'(\d+\s*v|\d+\s*ma)', q)
type_query = type_match.group(1).replace(" ", "").lower() if type_match else None
results = []
for v in tech_info.values():
type_str = str(v.get("TYPE", "")).lower().replace(" ", "")
dim = v.get("DIMMABILITY", "").upper()
if ("DIM" in dim or "1-10V" in dim or "DALI" in dim or "CASAMBI" in dim or "TOUCHDIM" in dim) and (not type_query or type_query in type_str):
desc = v.get("CONVERTER DESCRIPTION", v.get("CONVERTER DESCRIPTION:", "N/A")).strip()
artnr = int(float(v.get("ARTNR", "N/A"))) if v.get("ARTNR") else "N/A"
results.append(f"{desc} (ARTNR: {artnr}), Dimming: {dim}")
if not results:
return f"No{' ' + type_query.upper() if type_query else ''} converters with dimming support found."
return "\n".join(results)
# Strain relief
if "strain relief" in q:
candidates = [v for v in tech_info.values() if v["STRAIN RELIEF"].lower() == "yes"]
yesno = "Yes" if candidates else "No"
details = "\n".join([f"{v['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(v['ARTNR'])})" for v in candidates])
return f"{yesno}. " + (details if details else "")
# Input voltage range for each converter
if "input voltage range for each converter" in q or "input voltage range" in q and "each" in q:
result = []
for v in tech_info.values():
description = v.get("CONVERTER DESCRIPTION", "N/A").strip()
input_voltage = v.get("INPUT VOLTAGE", "N/A")
result.append(f"{description}: {input_voltage}")
return "\n".join(result)
# Comparison
if "compare" in q:
numbers = re.findall(r'\d+', question)
if len(numbers) >= 2:
a = get_product_by_artnr(numbers[0], tech_info)
b = get_product_by_artnr(numbers[1], tech_info)
if a and b:
return (f"Comparison:\n"
f"- {a['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(a['ARTNR'])}): {a['DIMMABILITY']}, {a['LOCATION']}, Efficiency {a['EFFICIENCY']}\n"
f"- {b['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(b['ARTNR'])}): {b['DIMMABILITY']}, {b['LOCATION']}, Efficiency {b['EFFICIENCY']}")
# IP20 vs IP67
if "ip20" in q and "ip67" in q:
ip20 = [v for v in tech_info.values() if "ip20" in str(v["CONVERTER DESCRIPTION"]).lower()]
ip67 = [v for v in tech_info.values() if "ip67" in str(v["CONVERTER DESCRIPTION"]).lower()]
return (f"IP20 converters:\n" + "\n".join([f"- {v['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(v['ARTNR'])})" for v in ip20]) + "\n\n" +
f"IP67 converters:\n" + "\n".join([f"- {v['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(v['ARTNR'])})" for v in ip67]))
# Size/space
if "smallest" in q or "compact" in q:
candidates = [v for v in tech_info.values() if "24v" in v["TYPE"].lower()]
if not candidates:
return "No 24V converters found."
smallest = min(
candidates,
key=lambda x: parse_float(str(x["SIZE"].split('*')[0]))
)
return f"Smallest 24V converter: {smallest['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(smallest['ARTNR'])}), size: {smallest['SIZE']}"
if "under 100mm" in q or ("length" in q and "100" in q):
candidates = [v for v in tech_info.values() if parse_float(str(v["SIZE"].split('*')[0])) < 100]
return "\n".join([f"{v['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(v['ARTNR'])}), size: {v['SIZE']}" for v in candidates])
# Documentation
if "datasheet" in q or "manual" in q or "pdf" in q:
numbers = re.findall(r'\d+', question)
if numbers:
v = get_product_by_artnr(numbers[0], tech_info)
if v and v["PDF_LINK"] != "N/A":
return f"Datasheet/manual for {v['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(v['ARTNR'])}): {v['PDF_LINK']}"
# Pricing
if "price" in q or "affordable" in q:
if "most affordable" in q:
candidates = [v for v in tech_info.values() if "24v" in v["TYPE"].lower() and str(v["Listprice"]) != "N/A"]
if candidates:
cheapest = min(candidates, key=lambda x: float(str(x["Listprice"]).replace(',', '.')))
return f"Most affordable 24V converter: {cheapest['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(cheapest['ARTNR'])}), price: {cheapest['Listprice']}"
elif "price below" in q:
price_match = re.search(r'€(\d+)', question)
price = float(price_match.group(1)) if price_match else 65
candidates = [
v for v in tech_info.values()
if "24v" in v["TYPE"].lower()
and str(v["Listprice"]) != "N/A"
and parse_price(v["Listprice"]) < price
]
return "\n".join([f"{v['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(v['ARTNR'])}), price: {v['Listprice']}" for v in candidates])
# Product info
if "weight" in q:
numbers = re.findall(r'\d+', question)
if numbers:
v = get_product_by_artnr(numbers[0], tech_info)
if v and v["WEIGHT"] != "N/A":
return f"Weight of {v['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(v['ARTNR'])}): {v['WEIGHT']} kg"
if "input voltage" in q:
numbers = re.findall(r'\d+', question)
if numbers:
v = get_product_by_artnr(numbers[0], tech_info)
if v and v["INPUT VOLTAGE"] != "N/A":
return f"Input voltage range of {v['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(v['ARTNR'])}): {v['INPUT VOLTAGE']}"
# All 24V converters
if "show me all 24v converters" in q:
candidates = [v for v in tech_info.values() if "24v" in v["TYPE"].lower()]
return "\n".join([f"{v['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(v['ARTNR'])})" for v in candidates])
# Lifecycle
if "active" in q or "lifecycle" in q:
candidates = [v for v in tech_info.values() if v.get("LifeCycle", "").upper() == "A"]
return "\n".join([f"{v['CONVERTER DESCRIPTION']} (ARTNR: {normalize_artnr(v['ARTNR'])}) is active." for v in candidates])
if "output voltage for each converter" in q or "output voltage for each model" in q:
result = []
for v in tech_info.values():
description = v.get("CONVERTER DESCRIPTION", "N/A").strip()
output_voltage = v.get("OUTPUT VOLTAGE", "N/A")
result.append(f"{description}: {output_voltage}")
return "\n".join(result)
if "ip rating for each converter" in q and "what does it mean" in q:
ip_meaning = {
"IP20": "Protected against solid foreign objects ≥12mm (e.g., fingers), no protection against water. Suitable for indoor use in protected environments like cabinets.",
"IP54": "Protected against limited dust ingress and water splashes from any direction. Suitable for outdoor use in sheltered locations.",
"IP65": "Dust-tight and protected against low-pressure water jets. Suitable for outdoor use.",
"IP66": "Dust-tight and protected against powerful water jets. Suitable for outdoor use in harsh environments.",
"IP67": "Dust-tight and protected against temporary immersion in water. Suitable for outdoor use, even in harsh environments."
}
result = ["IP rating for each converter and installation meaning:"]
for v in tech_info.values():
description = v.get("CONVERTER DESCRIPTION", "N/A").strip()
ip = v.get("IP", "N/A")
normalized_ip = normalize_ip(ip)
meaning = ip_meaning.get(normalized_ip, "No specific installation guidance available.")
result.append(f"{description}: {normalized_ip} – {meaning}")
return "\n".join(result)
if "class of each converter" in q or "class (electrical safety class) of each converter" in q:
result = ["Class (electrical safety class) for each converter:"]
for v in tech_info.values():
description = v.get("CONVERTER DESCRIPTION", "N/A").strip()
class_ = v.get("CLASS", "N/A")
result.append(f"{description}: Class {class_}")
return "\n".join(result)
if "dimensions" in q and "lbh" in q or ("dimensions" in q and "l*b*h" in q) or ("dimensions of each converter" in q):
result = ["Dimensions (LBH) for each converter:"]
for v in tech_info.values():
description = v.get("CONVERTER DESCRIPTION", "N/A").strip()
size = v.get("SIZE", "N/A")
result.append(f"{description}: {size}")
return "\n".join(result)
if "weight of converter" in q or "weight of each converter" in q or ("gross weight" in q and "each" in q):
result = ["Gross weight of each converter:"]
for v in tech_info.values():
description = v.get("CONVERTER DESCRIPTION", "N/A").strip()
weight = v.get("WEIGHT", v.get("Gross Weight", "N/A"))
result.append(f"{description}: {weight} kg")
return "\n".join(result)
# Example: "What is the difference between the 24V DC and 48V LED converters?"
if "difference between" in q and any(
(f"{x}v" in q and f"{y}v" in q) or
(f"{x}ma" in q and f"{y}ma" in q)
for x, y in [(24, 48), (180, 250), (250, 260), (260, 350), (350, 500), (500, 700)]
):
# Extract the two types from the question (simplified for demo)
parts = q.split("between")[1].split("and")
type1 = parts[0].strip().lower()
type2 = parts[1].strip().lower()
# Build a technical explanation based on the types
if "24v" in type1 and "48v" in type2:
explanation = (
"Difference between 24V DC and 48V LED converters:\n"
"- **Power Delivery:** 48V converters can deliver the same power at half the current compared to 24V, reducing cable size and cost.\n"
"- **Efficiency:** 48V systems are generally more efficient, especially over longer cable runs, due to lower current and less voltage drop.\n"
"- **Safety:** Both 24V and 48V are considered Safety Extra Low Voltage (SELV), but 48V is still below the 60V SELV limit, so it remains safe for most installations.\n"
"- **Compatibility:** 48V converters are better for large LED systems or longer runs, while 24V is common for smaller or standard installations.\n"
"- **System Design:** 48V allows for higher power LED arrays and longer cable runs without significant voltage drop or power loss[2][3][4].\n"
)
elif any(f"{x}ma" in type1 and f"{y}ma" in type2 for x, y in [(180, 250), (250, 260), (260, 350), (350, 500), (500, 700)]):
# Example for current-based converters
current1 = type1.split("ma")[0].strip()
current2 = type2.split("ma")[0].strip()
explanation = (
f"Difference between {current1}mA and {current2}mA LED converters:\n"
f"- **Current Output:** {current2}mA converters can drive more power-hungry or larger LED installations compared to {current1}mA.\n"
f"- **Application:** {current1}mA is typically used for smaller LED strips or modules, while {current2}mA is used for larger or more demanding LED setups.\n"
f"- **Efficiency:** Higher current converters (like {current2}mA) may require thicker cables to minimize voltage drop and power loss over distance.\n"
)
else:
explanation = "Sorry, I couldn't find a technical comparison for those converter types. Please specify the types you want to compare (e.g., 24V vs 48V, or 180mA vs 350mA)."
return explanation
# Example: "What is the difference between remote and in-track LED converters?"
if "difference between remote and in-track" in q.lower() or "remote vs in-track" in q.lower():
explanation = (
"Difference between 'remote' and 'in-track' LED converters:\n\n"
"- **Remote Converters:**\n"
" - The converter (driver) is located outside the LED track or rail, often in a central location or remote enclosure.\n"
" - Multiple LED tracks or fixtures can be powered from a single remote converter.\n"
" - Remote converters are easier to access for maintenance or replacement.\n"
" - They are typically used for larger installations or when you want to centralize power management.\n"
" - Remote converters can be more efficient and reliable, as they are not limited by the space or heat constraints of the track.\n\n"
"- **In-Track Converters:**\n"
" - The converter is mounted directly inside or alongside the LED track or rail.\n"
" - Each track usually has its own dedicated converter.\n"
" - In-track converters are more compact and can be used for smaller installations or where a centralized converter is not practical.\n"
" - They are less visible and can be easier to install in tight spaces.\n"
" - Maintenance or replacement may require access to the track itself.\n\n"
"**Summary:**\n"
"Remote converters are best for larger, more complex systems with centralized power, while in-track converters are ideal for smaller, standalone tracks or where space and aesthetics are a concern."
)
return explanation
if "minimum and maximum number of lamps" in q or "min and max number of lamps" in q or "min max lamps" in q:
result = ["Minimum and maximum number of lamps that can be connected to each converter:"]
for v in tech_info.values():
description = v.get("CONVERTER DESCRIPTION", "N/A").strip()
lamps = v.get("LAMPS", {})
if not lamps:
result.append(f"{description}: No lamp compatibility data available.")
else:
for lamp_name, lamp_data in lamps.items():
min_val = lamp_data.get("min", "N/A")
max_val = lamp_data.get("max", "N/A")
result.append(f"{description}: {lamp_name} – min: {min_val}, max: {max_val}")
return "\n".join(result)
# Default fallback
return "I do not know the answer to this question."
# --- LLM fallback function ---
def llm_fallback(question):
prompt = f"User: {question}\nAssistant:"
inputs = llm_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=256)
outputs = llm_model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=64,
do_sample=True,
temperature=0.7,
pad_token_id=llm_tokenizer.eos_token_id
)
completion = llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's answer
if "Assistant:" in completion:
return completion.split("Assistant:")[-1].strip()
else:
return completion.strip()
# --- Prompt and Graph ---
custom_prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful technical assistant for TAL BV and assist users in finding information. Use the provided documentation to answer questions accurately and with necessary sources."),
("human", """Context: {context}
Question: {question}
Answer:""")
])
class State(TypedDict):
question: str
context: List[Document]
answer: str
def retrieve(state: State):
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
retrieved_docs = retriever.invoke(state["question"])
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
prompt = f"""
You are a helpful technical assistant for TAL BV and assist users in finding information. Use the provided documentation to answer questions accurately and with necessary sources.
Context: {docs_content}
Question: {state["question"]}
Answer:
"""
input_ids = tokenizer.encode(prompt, truncation=True, max_length=max_length, return_tensors="pt")
truncated_prompt = tokenizer.decode(input_ids[0])
response = chatbot(truncated_prompt, max_new_tokens=32, do_sample=True, temperature=0.2)
answer = response[0]['generated_text'].split("Answer:", 1)[-1].strip()
return {"answer": answer}
graph_builder = StateGraph(State)
graph_builder.add_node("retrieve", retrieve)
graph_builder.add_node("generate", generate)
graph_builder.add_edge(START, "retrieve")
graph_builder.add_edge("retrieve", "generate")
graph = graph_builder.compile()
# --- Main chatbot function ---
def tal_langchain_chatbot(user_message, history=None):
# 1. Try to answer from database/rules
answer = answer_technical_question(user_message, tech_info)
# 2. If no answer, use the LLM
if not answer or answer.lower() == "i do not know the answer to this question.":
answer = llm_fallback(user_message)
# 3. Update history and return
if history is None:
history = []
history.append({"role": "user", "content": user_message})
history.append({"role": "assistant", "content": answer})
return history, history, ""
# --- Gradio UI ---
custom_css = """
#chatbot-toggle-btn {
position: fixed;
bottom: 30px;
right: 30px;
z-index: 10001;
background-color: #ED1C24;
color: white;
border: none;
border-radius: 50%;
width: 56px;
height: 56px;
font-size: 28px;
font-weight: bold;
cursor: pointer;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
display: flex;
align-items: center;
justify-content: center;
transition: all 0.3s ease;
}
#chatbot-panel {
position: fixed;
bottom: 100px;
right: 30px;
z-index: 10000;
width: 600px; /* Increased width */
height: 700px; /* Increased height */
background-color: #ffffff;
border-radius: 20px;
box-shadow: 0 4px 24px rgba(0, 0, 0, 0.25);
display: flex;
flex-direction: column;
overflow: hidden;
font-family: 'Arial', sans-serif;
}
#chatbot-panel.hide {
display: none !important;
}
#chat-header {
background-color: #ED1C24;
color: white;
padding: 20px;
font-weight: bold;
font-size: 22px;
display: flex;
align-items: center;
gap: 12px;
width: 100%;
box-sizing: border-box;
}
#chat-header img {
border-radius: 50%;
width: 40px;
height: 40px;
}
.gr-chatbot {
flex: 1;
overflow-y: auto;
padding: 20px;
background-color: #f9f9f9;
border-top: 1px solid #eee;
border-bottom: 1px solid #eee;
display: flex;
flex-direction: column;
gap: 12px;
box-sizing: border-box;
}
.gr-textbox {
padding: 16px 20px;
background-color: #fff;
display: flex;
align-items: center;
gap: 12px;
border-top: 1px solid #eee;
box-sizing: border-box;
}
.gr-textbox textarea {
flex: 1;
resize: none;
padding: 12px;
background-color: white;
border: 1px solid #ccc;
border-radius: 8px;
font-family: inherit;
font-size: 16px;
box-sizing: border-box;
height: 48px;
line-height: 1.5;
}
.gr-textbox button {
background-color: #ED1C24;
border: none;
color: white;
border-radius: 8px;
padding: 12px 20px;
cursor: pointer;
font-weight: bold;
transition: background-color 0.3s ease;
font-size: 16px;
}
.gr-textbox button:hover {
background-color: #c4161c;
}
footer {
display: none !important;
}
"""
def toggle_visibility(current_state):
new_state = not current_state
return new_state, gr.update(visible=new_state)
with gr.Blocks(css=custom_css) as demo:
visibility_state = gr.State(False)
history = gr.State([])
chatbot_toggle = gr.Button("💬", elem_id="chatbot-toggle-btn")
with gr.Column(visible=False, elem_id="chatbot-panel") as chatbot_panel:
gr.HTML("""
<div id='chat-header'>
<img src="https://www.svgrepo.com/download/490283/pixar-lamp.svg" />
Lofty the TAL Bot
</div>
""")
chat = gr.Chatbot(label="Chat", elem_id="chat-window", type="messages")
msg = gr.Textbox(placeholder="Type your message here...", show_label=False)
send = gr.Button("Send")
send.click(
fn=tal_langchain_chatbot,
inputs=[msg, history],
outputs=[chat, history, msg]
)
msg.submit(
fn=tal_langchain_chatbot,
inputs=[msg, history],
outputs=[chat, history, msg]
)
chatbot_toggle.click(
fn=toggle_visibility,
inputs=visibility_state,
outputs=[visibility_state, chatbot_panel]
)
if __name__ == "__main__":
demo.launch()
|