File size: 21,792 Bytes
c70a5b7
0e92f07
 
 
 
 
 
 
c70a5b7
 
0e92f07
e447f1a
c70a5b7
0e92f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70a5b7
0e92f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70a5b7
0e92f07
 
c70a5b7
0e92f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70a5b7
0e92f07
 
 
 
 
 
 
1139524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70a5b7
 
0e92f07
 
1139524
 
 
 
 
 
 
c70a5b7
1139524
c70a5b7
 
 
 
1139524
 
 
0e92f07
 
1139524
 
0e92f07
 
 
c70a5b7
 
 
 
 
0e92f07
 
 
 
 
 
 
 
 
 
 
1139524
 
0e92f07
 
 
 
 
 
 
 
 
 
 
 
c70a5b7
0e92f07
 
 
 
 
1139524
 
 
c70a5b7
0e92f07
 
 
c70a5b7
0e92f07
c70a5b7
 
 
 
0e92f07
c70a5b7
 
 
 
 
 
 
 
 
 
 
1139524
c70a5b7
 
 
 
1139524
 
 
c70a5b7
 
 
 
 
1139524
 
c70a5b7
 
1139524
 
 
 
 
 
 
 
c70a5b7
1139524
 
c70a5b7
 
 
1139524
c70a5b7
1139524
 
 
 
 
 
 
 
 
 
 
c70a5b7
 
 
 
 
 
1139524
c70a5b7
1139524
c70a5b7
 
 
 
 
 
 
 
 
 
1139524
c70a5b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139524
c70a5b7
 
1139524
 
c70a5b7
 
 
 
 
0e92f07
 
 
 
 
c70a5b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139524
 
c70a5b7
 
0e92f07
c70a5b7
 
 
1139524
c70a5b7
1139524
c70a5b7
 
 
1139524
 
 
 
 
 
c70a5b7
 
 
1139524
 
c70a5b7
 
1139524
c70a5b7
1139524
 
 
 
c70a5b7
 
1139524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70a5b7
 
 
 
 
1139524
 
c70a5b7
 
 
 
 
 
1139524
 
c70a5b7
 
 
 
 
 
 
1139524
c70a5b7
 
 
 
 
 
 
 
1139524
c70a5b7
 
 
 
 
 
1139524
c70a5b7
1139524
c70a5b7
1139524
c70a5b7
 
 
 
 
1139524
c70a5b7
 
 
1139524
 
 
 
 
 
c70a5b7
 
 
 
1139524
c70a5b7
 
 
 
1139524
c70a5b7
 
 
 
 
1139524
 
 
 
 
 
 
 
 
c70a5b7
 
1139524
c70a5b7
1139524
 
 
c70a5b7
 
1139524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70a5b7
 
 
 
 
1139524
c70a5b7
 
 
 
 
 
 
 
 
 
 
0e92f07
c70a5b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139524
c70a5b7
1139524
c70a5b7
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
import gradio as gr
import os
import logging
import gc
import psutil
from functools import wraps
import time
import threading
import json
from model.generate import generate_test_cases, get_generator, monitor_memory


# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Thread-safe initialization
_init_lock = threading.Lock()
_initialized = False

def init_model():
    """Initialize model on startup"""
    try:
        # Skip AI model loading in low memory environments
        memory_mb = psutil.Process().memory_info().rss / 1024 / 1024
        if memory_mb > 200 or os.environ.get('HUGGINGFACE_SPACE'):
            logger.info("⚠️ Skipping AI model loading due to memory constraints")
            logger.info("πŸ”§ Using template-based generation mode")
            return True

        logger.info("πŸš€ Initializing AI model...")
        generator = get_generator()
        model_info = generator.get_model_info()
        logger.info(f"βœ… Model initialized: {model_info['model_name']} | Memory: {model_info['memory_usage']}")
        return True
    except Exception as e:
        logger.error(f"❌ Model initialization failed: {e}")
        logger.info("πŸ”§ Falling back to template-based generation")
        return False

def check_health():
    """Check system health"""
    try:
        memory_mb = psutil.Process().memory_info().rss / 1024 / 1024
        return {
            "status": "healthy" if memory_mb < 450 else "warning",
            "memory_usage": f"{memory_mb:.1f}MB",
            "memory_limit": "512MB"
        }
    except Exception:
        return {"status": "unknown", "memory_usage": "unavailable"}

def smart_memory_monitor(func):
    """Enhanced memory monitoring with automatic cleanup"""
    @wraps(func)
    def wrapper(*args, **kwargs):
        start_time = time.time()
        try:
            initial_memory = psutil.Process().memory_info().rss / 1024 / 1024
            logger.info(f"πŸ” {func.__name__} started | Memory: {initial_memory:.1f}MB")

            if initial_memory > 400:
                logger.warning("⚠️ High memory detected, forcing cleanup...")
                gc.collect()

            result = func(*args, **kwargs)
            return result
        except Exception as e:
            logger.error(f"❌ Error in {func.__name__}: {str(e)}")
            return {
                "error": "Internal server error occurred",
                "message": "Please try again or contact support"
            }
        finally:
            final_memory = psutil.Process().memory_info().rss / 1024 / 1024
            execution_time = time.time() - start_time

            logger.info(f"βœ… {func.__name__} completed | Memory: {final_memory:.1f}MB | Time: {execution_time:.2f}s")

            if final_memory > 450:
                logger.warning("🧹 High memory usage, forcing aggressive cleanup...")
                gc.collect()
                post_cleanup_memory = psutil.Process().memory_info().rss / 1024 / 1024
                logger.info(f"🧹 Post-cleanup memory: {post_cleanup_memory:.1f}MB")
    return wrapper

def ensure_initialized():
    """Ensure model is initialized (thread-safe)"""
    global _initialized
    if not _initialized:
        with _init_lock:
            if not _initialized:
                logger.info("πŸš€ Gradio app starting up on Hugging Face Spaces...")
                success = init_model()
                if success:
                    logger.info("βœ… Startup completed successfully")
                else:
                    logger.warning("⚠️ Model initialization failed, using template mode")
                _initialized = True

def read_uploaded_file(file_obj):
    """Read and extract text from uploaded file"""
    if file_obj is None:
        return ""
    
    try:
        file_path = file_obj.name
        file_extension = os.path.splitext(file_path)[1].lower()
        
        if file_extension in ['.txt', '.md']:
            with open(file_path, 'r', encoding='utf-8') as f:
                content = f.read()
        elif file_extension in ['.doc', '.docx']:
            try:
                import docx
                doc = docx.Document(file_path)
                content = '\n'.join([paragraph.text for paragraph in doc.paragraphs])
            except ImportError:
                logger.warning("python-docx not available, trying to read as text")
                with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
                    content = f.read()
        elif file_extension == '.pdf':
            try:
                import PyPDF2
                with open(file_path, 'rb') as f:
                    reader = PyPDF2.PdfReader(f)
                    content = ''
                    for page in reader.pages:
                        content += page.extract_text() + '\n'
            except ImportError:
                logger.warning("PyPDF2 not available, cannot read PDF files")
                return "❌ PDF support requires PyPDF2. Please install it or use text/Word files."
        else:
            # Try to read as plain text
            with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
                content = f.read()
        
        logger.info(f"πŸ“„ File read successfully: {len(content)} characters")
        return content
        
    except Exception as e:
        logger.error(f"❌ Error reading file: {str(e)}")
        return f"❌ Error reading file: {str(e)}"

def combine_inputs(prompt_text, uploaded_file):
    """Combine prompt text and uploaded file content"""
    file_content = ""
    
    if uploaded_file is not None:
        file_content = read_uploaded_file(uploaded_file)
        if file_content.startswith("❌"):
            return file_content  # Return error message
    
    # Combine both inputs
    combined_text = ""
    
    if prompt_text and prompt_text.strip():
        combined_text += "PROMPT:\n" + prompt_text.strip() + "\n\n"
    
    if file_content and not file_content.startswith("❌"):
        combined_text += "DOCUMENT CONTENT:\n" + file_content.strip()
    
    if not combined_text.strip():
        return "❌ Please provide either text input or upload a document."
    
    return combined_text.strip()

# Initialize on startup
ensure_initialized()

@smart_memory_monitor
def generate_test_cases_api(prompt_text, uploaded_file):
    """Main API function for generating test cases with dual input support"""
    
    # Combine inputs
    combined_input = combine_inputs(prompt_text, uploaded_file)
    
    if combined_input.startswith("❌"):
        return {
            "error": combined_input,
            "test_cases": [],
            "count": 0
        }
    
    if len(combined_input) > 8000:
        logger.warning(f"Input text truncated from {len(combined_input)} to 8000 characters")
        combined_input = combined_input[:8000]

    try:
        logger.info(f"🎯 Generating test cases for combined input ({len(combined_input)} chars)")
        test_cases = generate_test_cases(combined_input)

        if not test_cases or len(test_cases) == 0:
            logger.error("No test cases generated")
            return {
                "error": "Failed to generate test cases",
                "test_cases": [],
                "count": 0
            }

        try:
            generator = get_generator()
            model_info = generator.get_model_info()
            model_used = model_info.get("model_name", "Unknown Model")
            generation_method = model_info.get("status", "unknown")
        except Exception:
            model_used = "Template-Based Generator"
            generation_method = "template_mode"

        if model_used == "Template-Based Generator":
            model_algorithm = "Enhanced Rule-based Template"
            model_reason = "Used enhanced rule-based generation with pattern matching and context analysis."
        elif "distilgpt2" in model_used:
            model_algorithm = "Transformer-based LM"
            model_reason = "Used DistilGPT2 for balanced performance and memory efficiency."
        elif "DialoGPT" in model_used:
            model_algorithm = "Transformer-based LM"
            model_reason = "Used DialoGPT-small as it fits within memory limits and handles conversational input well."
        else:
            model_algorithm = "Transformer-based LM"
            model_reason = "Used available Hugging Face causal LM due to sufficient resources."

        logger.info(f"βœ… Successfully generated {len(test_cases)} test cases")

        return {
            "test_cases": test_cases,
            "count": len(test_cases),
            "model_used": model_used,
            "generation_method": generation_method,
            "model_algorithm": model_algorithm,
            "model_reason": model_reason,
            "input_source": "Combined (Prompt + Document)" if (prompt_text and uploaded_file) else 
                           "Document Upload" if uploaded_file else "Text Prompt"
        }

    except Exception as e:
        logger.error(f"❌ Test case generation failed: {str(e)}")
        return {
            "error": "Failed to generate test cases",
            "message": "Please try again with different input",
            "test_cases": [],
            "count": 0
        }

def format_test_cases_output(result):
    """Format the test cases for display"""
    if "error" in result:
        return f"❌ Error: {result['error']}", ""
    
    test_cases = result.get("test_cases", [])
    if not test_cases:
        return "No test cases generated", ""
    
    # Format test cases for display
    formatted_output = f"βœ… Generated {result['count']} Test Cases\n\n"
    formatted_output += f"πŸ“₯ Input Source: {result.get('input_source', 'Unknown')}\n"
    formatted_output += f"πŸ€– Model: {result['model_used']}\n"
    formatted_output += f"πŸ”§ Algorithm: {result['model_algorithm']}\n"
    formatted_output += f"πŸ’‘ Reason: {result['model_reason']}\n\n"
    
    formatted_output += "=" * 60 + "\n"
    formatted_output += "GENERATED TEST CASES\n"
    formatted_output += "=" * 60 + "\n\n"
    
    for i, tc in enumerate(test_cases, 1):
        formatted_output += f"πŸ”Ή Test Case {i}:\n"
        formatted_output += f"   ID: {tc.get('id', f'TC_{i:03d}')}\n"
        formatted_output += f"   Title: {tc.get('title', 'N/A')}\n"
        formatted_output += f"   Priority: {tc.get('priority', 'Medium')}\n"
        formatted_output += f"   Category: {tc.get('category', 'Functional')}\n"
        formatted_output += f"   Description: {tc.get('description', 'N/A')}\n"
        
        # Pre-conditions
        preconditions = tc.get('preconditions', [])
        if preconditions:
            formatted_output += f"   Pre-conditions:\n"
            for j, precond in enumerate(preconditions, 1):
                formatted_output += f"      β€’ {precond}\n"
        
        # Test steps
        steps = tc.get('steps', [])
        if isinstance(steps, list) and steps:
            formatted_output += f"   Test Steps:\n"
            for j, step in enumerate(steps, 1):
                formatted_output += f"      {j}. {step}\n"
        else:
            formatted_output += f"   Test Steps: {steps if steps else 'N/A'}\n"
        
        formatted_output += f"   Expected Result: {tc.get('expected', 'N/A')}\n"
        
        # Post-conditions
        postconditions = tc.get('postconditions', [])
        if postconditions:
            formatted_output += f"   Post-conditions:\n"
            for postcond in postconditions:
                formatted_output += f"      β€’ {postcond}\n"
        
        formatted_output += f"   Test Data: {tc.get('test_data', 'N/A')}\n"
        formatted_output += "\n" + "-" * 40 + "\n\n"
    
    # Return JSON for API access
    json_output = json.dumps(result, indent=2)
    
    return formatted_output, json_output

def gradio_generate_test_cases(prompt_text, uploaded_file):
    """Gradio interface function"""
    result = generate_test_cases_api(prompt_text, uploaded_file)
    return format_test_cases_output(result)

def get_system_status():
    """Get system status information"""
    health_data = check_health()
    try:
        generator = get_generator()
        model_info = generator.get_model_info()
    except Exception:
        model_info = {
            "model_name": "Enhanced Template-Based Generator",
            "status": "template_mode",
            "optimization": "memory_safe"
        }

    status_info = f"""
πŸ₯ SYSTEM STATUS
================
Status: {health_data["status"]}
Memory Usage: {health_data["memory_usage"]}
Memory Limit: 512MB

πŸ€– MODEL INFORMATION
===================
Model Name: {model_info["model_name"]}
Status: {model_info["status"]}
Optimization: {model_info.get("optimization", "standard")}

πŸš€ APPLICATION INFO
==================
Version: 2.0.0-enhanced-input
Environment: Hugging Face Spaces
Backend: Gradio
Features: Text Input + File Upload
Supported Files: .txt, .md, .doc, .docx, .pdf
    """
    return status_info

def get_model_info_detailed():
    """Get detailed model information"""
    try:
        generator = get_generator()
        info = generator.get_model_info()
        health_data = check_health()

        detailed_info = f"""
πŸ”§ DETAILED MODEL INFORMATION
============================
Model Name: {info.get('model_name', 'N/A')}
Status: {info.get('status', 'N/A')}
Memory Usage: {info.get('memory_usage', 'N/A')}
Optimization Level: {info.get('optimization', 'N/A')}

πŸ“Š SYSTEM METRICS
================
System Status: {health_data['status']}
Current Memory: {health_data['memory_usage']}
Memory Limit: {health_data.get('memory_limit', 'N/A')}

βš™οΈ CONFIGURATION
===============
Environment: {"Hugging Face Spaces" if os.environ.get('SPACE_ID') else "Local"}
Backend: Gradio
Threading: Enabled
Memory Monitoring: Active
Input Methods: Text + File Upload
File Support: TXT, MD, DOC, DOCX, PDF
        """
        return detailed_info
    except Exception as e:
        return f"❌ Error getting model info: {str(e)}"

# Create Gradio interface
with gr.Blocks(title="AI Test Case Generator - Enhanced", theme=gr.themes.Soft()) as app:
    gr.Markdown("""
    # πŸ§ͺ AI Test Case Generator - Enhanced Edition
    
    Generate comprehensive test cases from Software Requirements Specification (SRS) documents using AI models.
    
    **New Features:**
    - πŸ“ **Dual Input Support**: Text prompt AND/OR document upload
    - πŸ“„ **File Upload**: Support for .txt, .md, .doc, .docx, .pdf files
    - 🎯 **Enhanced Test Cases**: More detailed and comprehensive test case generation
    - πŸ”§ **Improved Templates**: Better rule-based fallback with pattern matching
    - πŸ“Š **Better Formatting**: Enhanced output with priorities, categories, and conditions
    """)
    
    with gr.Tab("πŸ§ͺ Generate Test Cases"):
        gr.Markdown("### Choose your input method: Enter text directly, upload a document, or use both!")
        
        with gr.Row():
            with gr.Column(scale=2):
                # Text input
                srs_input = gr.Textbox(
                    label="πŸ“ Text Input (SRS, Requirements, or Prompt)",
                    placeholder="Enter your requirements, user stories, or specific prompt here...\n\nExample:\n- The system shall provide user authentication with username and password\n- Users should be able to login, logout, and reset passwords\n- The system should validate input and display appropriate error messages\n- Performance requirement: Login should complete within 3 seconds",
                    lines=8,
                    max_lines=15
                )
                
                # File upload
                file_upload = gr.File(
                    label="πŸ“„ Upload Document (Optional)",
                    file_types=[".txt", ".md", ".doc", ".docx", ".pdf"],
                    type="filepath"
                )
                
                gr.Markdown("""
                **πŸ’‘ Tips:**
                - Use **text input** for quick requirements or specific prompts
                - Use **file upload** for complete SRS documents
                - Use **both** to combine a specific prompt with a detailed document
                - Supported formats: TXT, Markdown, Word (.doc/.docx), PDF
                """)
                
                generate_btn = gr.Button("πŸš€ Generate Test Cases", variant="primary", size="lg")
            
            with gr.Column(scale=3):
                output_display = gr.Textbox(
                    label="πŸ“‹ Generated Test Cases",
                    lines=25,
                    max_lines=35,
                    interactive=False
                )
        
        with gr.Row():
            json_output = gr.Textbox(
                label="πŸ“„ JSON Output (for API use)",
                lines=12,
                max_lines=20,
                interactive=False
            )
    
    with gr.Tab("πŸ“Š System Status"):
        with gr.Column():
            status_display = gr.Textbox(
                label="πŸ₯ System Health & Status",
                lines=18,
                interactive=False
            )
            refresh_status_btn = gr.Button("πŸ”„ Refresh Status", variant="secondary")
    
    with gr.Tab("πŸ”§ Model Information"):
        with gr.Column():
            model_info_display = gr.Textbox(
                label="πŸ€– Detailed Model Information",
                lines=22,
                interactive=False
            )
            refresh_model_btn = gr.Button("πŸ”„ Refresh Model Info", variant="secondary")
    
    with gr.Tab("πŸ“š API Documentation"):
        gr.Markdown("""
        ## πŸ”Œ Enhanced API Endpoints
        
        This Gradio app supports both text input and file upload through API:
        
        ### Generate Test Cases (Text Only)
        **Endpoint:** `/api/predict`  
        **Method:** POST  
        **Body:**
        ```json
        {
          "data": ["Your SRS text here", null]
        }
        ```
        
        ### Generate Test Cases (With File)
        **Endpoint:** `/api/predict`  
        **Method:** POST (multipart/form-data)
        - Upload file and include text in the data array
        
        **Response Format:**
        ```json
        {
          "data": [
            "Formatted test cases output",
            "JSON output with enhanced test cases"
          ]
        }
        ```
        
        ### Enhanced Test Case Structure
        ```json
        {
          "test_cases": [
            {
              "id": "TC_001",
              "title": "Test Case Title",
              "priority": "High/Medium/Low", 
              "category": "Functional/Security/Performance/UI",
              "description": "Detailed test description",
              "preconditions": ["Pre-condition 1", "Pre-condition 2"],
              "steps": ["Step 1", "Step 2", "Step 3"],
              "expected": "Expected result",
              "postconditions": ["Post-condition 1"],
              "test_data": "Required test data"
            }
          ],
          "count": 5,
          "model_used": "distilgpt2",
          "model_algorithm": "Enhanced Rule-based Template",
          "model_reason": "Detailed selection reasoning...",
          "input_source": "Combined (Prompt + Document)"
        }
        ```
        
        ### Example Usage (Python with File):
        ```python
        import requests
        
        # Text only
        response = requests.post(
            "YOUR_SPACE_URL/api/predict",
            json={"data": ["User login requirements...", None]}
        )
        
        # With file upload (requires multipart handling)
        files = {'file': open('requirements.pdf', 'rb')}
        data = {'data': json.dumps(["Additional prompt", "file_placeholder"])}
        response = requests.post("YOUR_SPACE_URL/api/predict", files=files, data=data)
        ```
        
        ## πŸ“‹ Supported File Formats
        - **Text Files**: .txt, .md
        - **Word Documents**: .doc, .docx (requires python-docx)
        - **PDF Files**: .pdf (requires PyPDF2)
        - **Fallback**: Any text-readable format
        
        ## 🎯 Enhanced Features
        - **Dual Input**: Combine text prompts with document uploads
        - **Better Test Cases**: Includes priorities, categories, pre/post-conditions
        - **Smart Parsing**: Automatically detects requirement types and generates appropriate tests
        - **Memory Optimized**: Handles large documents efficiently
        """)
    
    # Event handlers
    generate_btn.click(
        fn=gradio_generate_test_cases,
        inputs=[srs_input, file_upload],
        outputs=[output_display, json_output]
    )
    
    refresh_status_btn.click(
        fn=get_system_status,
        outputs=[status_display]
    )
    
    refresh_model_btn.click(
        fn=get_model_info_detailed,
        outputs=[model_info_display]
    )
    
    # Load initial status
    app.load(
        fn=get_system_status,
        outputs=[status_display]
    )
    
    app.load(
        fn=get_model_info_detailed,
        outputs=[model_info_display]
    )

# Launch the app
if __name__ == "__main__":
    port = int(os.environ.get("PORT", 7860))
    
    logger.info(f"πŸš€ Starting Enhanced Gradio app on port {port}")
    logger.info(f"πŸ–₯️ Environment: {'Hugging Face Spaces' if os.environ.get('SPACE_ID') else 'Local'}")
    logger.info("πŸ“ Features: Text Input + File Upload Support")
    
    app.launch(
        server_name="0.0.0.0",
        server_port=port,
        share=False,
        show_error=True
    )