SushantGautam commited on
Commit
465b9da
·
verified ·
1 Parent(s): 8b94939

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -139
app.py CHANGED
@@ -1,154 +1,53 @@
1
  import gradio as gr
 
2
  import numpy as np
3
- import random
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
 
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
  }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
 
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
101
 
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
 
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
 
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
 
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
 
153
  if __name__ == "__main__":
154
  demo.launch()
 
1
  import gradio as gr
2
+ import pandas as pd
3
  import numpy as np
4
+ from pycaret.regression import load_model, predict_model # Change to regression if needed
5
 
6
+ # Load your dataframe
7
+ df = pd.read_csv("data.csv") # Replace with your actual data file
 
8
 
9
+ # Identify columns
10
+ input_columns = df.columns[:-1].tolist() # First 4 columns as input
11
+ target_column = df.columns[-1] # Last column as target
12
 
13
+ # Min-Max scaling per column
14
+ min_max_dict = {
15
+ col: (df[col].min(), df[col].max()) for col in input_columns
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ # Load your PyCaret model
19
+ model = load_model("TVAESynthesizer_best") # Replace with your actual saved model
20
+
21
+ def pycaret_predict_function(inputs):
22
+ # Convert input list to DataFrame
23
+ input_data = pd.DataFrame([inputs], columns=input_columns)
24
+
25
+ # Predict using PyCaret model
26
+ prediction = predict_model(model, data=input_data)
27
+ return prediction[target_column].values[0]
28
+
29
+ # Create Gradio inputs dynamically based on scaled range
30
+ input_components = [
31
+ gr.Slider(
32
+ minimum=min_max_dict[col][0],
33
+ maximum=min_max_dict[col][1],
34
+ step=(min_max_dict[col][1] - min_max_dict[col][0]) / 100,
35
+ label=col,
36
+ ) for col in input_columns
37
+ ]
38
 
39
+ # Gradio UI
40
+ with gr.Blocks() as demo:
41
+ gr.Markdown("## 🔮 Predict the Target Variable using PyCaret Model")
 
 
 
 
 
42
 
43
+ with gr.Row():
44
+ inputs = [component.render() for component in input_components]
 
 
 
 
 
45
 
46
+ output = gr.Textbox(label=f"Predicted: {target_column}")
 
 
 
 
 
 
 
47
 
48
+ predict_btn = gr.Button("Predict")
 
 
 
 
 
 
49
 
50
+ predict_btn.click(fn=pycaret_predict_function, inputs=inputs, outputs=output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  if __name__ == "__main__":
53
  demo.launch()