Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,53 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
import torch
|
8 |
|
9 |
-
|
10 |
-
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
torch_dtype = torch.float32
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
-
|
20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
-
css = """
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
}
|
65 |
-
"""
|
66 |
-
|
67 |
-
with gr.Blocks(css=css) as demo:
|
68 |
-
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
-
|
71 |
-
with gr.Row():
|
72 |
-
prompt = gr.Text(
|
73 |
-
label="Prompt",
|
74 |
-
show_label=False,
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
-
|
80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
|
119 |
-
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
|
128 |
-
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
-
)
|
135 |
|
136 |
-
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
-
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
import numpy as np
|
4 |
+
from pycaret.regression import load_model, predict_model # Change to regression if needed
|
5 |
|
6 |
+
# Load your dataframe
|
7 |
+
df = pd.read_csv("data.csv") # Replace with your actual data file
|
|
|
8 |
|
9 |
+
# Identify columns
|
10 |
+
input_columns = df.columns[:-1].tolist() # First 4 columns as input
|
11 |
+
target_column = df.columns[-1] # Last column as target
|
12 |
|
13 |
+
# Min-Max scaling per column
|
14 |
+
min_max_dict = {
|
15 |
+
col: (df[col].min(), df[col].max()) for col in input_columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Load your PyCaret model
|
19 |
+
model = load_model("TVAESynthesizer_best") # Replace with your actual saved model
|
20 |
+
|
21 |
+
def pycaret_predict_function(inputs):
|
22 |
+
# Convert input list to DataFrame
|
23 |
+
input_data = pd.DataFrame([inputs], columns=input_columns)
|
24 |
+
|
25 |
+
# Predict using PyCaret model
|
26 |
+
prediction = predict_model(model, data=input_data)
|
27 |
+
return prediction[target_column].values[0]
|
28 |
+
|
29 |
+
# Create Gradio inputs dynamically based on scaled range
|
30 |
+
input_components = [
|
31 |
+
gr.Slider(
|
32 |
+
minimum=min_max_dict[col][0],
|
33 |
+
maximum=min_max_dict[col][1],
|
34 |
+
step=(min_max_dict[col][1] - min_max_dict[col][0]) / 100,
|
35 |
+
label=col,
|
36 |
+
) for col in input_columns
|
37 |
+
]
|
38 |
|
39 |
+
# Gradio UI
|
40 |
+
with gr.Blocks() as demo:
|
41 |
+
gr.Markdown("## 🔮 Predict the Target Variable using PyCaret Model")
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
with gr.Row():
|
44 |
+
inputs = [component.render() for component in input_components]
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
output = gr.Textbox(label=f"Predicted: {target_column}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
predict_btn = gr.Button("Predict")
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
predict_btn.click(fn=pycaret_predict_function, inputs=inputs, outputs=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
if __name__ == "__main__":
|
53 |
demo.launch()
|