Amine_demo / app.py
SushantGautam's picture
Update app.py
d0da8d5 verified
raw
history blame
2.12 kB
from sklearn.preprocessing import MinMaxScaler
import gradio as gr
import pandas as pd
import numpy as np
# Change to regression if needed
from pycaret.regression import load_model, predict_model, setup
# Load your dataframe
df = pd.read_csv("data.csv", index_col=0) # Replace with your actual data file
clf1 = setup(data=df, target='Mu (kN⋅m)', normalize=False)
# Use the same scaler that was used during training (important!)
scaler = MinMaxScaler()
input_columns = df.columns[:-1].tolist() # First 4 columns as input
target_column = df.columns[-1] # Last column as target
scaler.fit(df[input_columns])
# Min-Max scaling per column
min_max_dict = {
col: (df[col].min(), df[col].max()) for col in input_columns
}
# Load your PyCaret model
# Replace with your actual saved model
def pycaret_predict_function(*inputs):
# Convert input tuple to DataFrame
dfx = pd.DataFrame([inputs], columns=input_columns)
dfx_scaled = pd.DataFrame(scaler.transform(dfx), columns=input_columns)
breakpoint()
print("Input DataFrame for prediction:", dfx_scaled)
model = load_model("TVAESynthesizer_best")
prediction = predict_model(model, data=dfx_scaled)
return prediction["prediction_label"].values[0]
try:
pass
except KeyError as e:
return 'Error: Prediction label not found. Please check the model output: ' + str(e)
# Create Gradio inputs dynamically based on scaled range
input_components = [
gr.Slider(
minimum=min_max_dict[col][0],
maximum=min_max_dict[col][1],
step=(min_max_dict[col][1] - min_max_dict[col][0]) / 100,
label=col,
) for col in input_columns
]
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## 🔮 Predict the Target Variable using PyCaret Model")
with gr.Row():
inputs = [component.render() for component in input_components]
output = gr.Textbox(label=f"Predicted: {target_column}")
predict_btn = gr.Button("Predict")
predict_btn.click(fn=pycaret_predict_function,
inputs=inputs, outputs=output)
if __name__ == "__main__":
demo.launch()