File size: 7,598 Bytes
b89eee2
 
 
 
 
6781e5a
aff85de
b89eee2
 
 
 
 
 
6781e5a
b89eee2
 
 
 
 
 
 
10e5f03
 
 
 
 
0680865
 
 
 
10e5f03
 
7caafe1
10e5f03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d12ce0d
b89eee2
6781e5a
7caafe1
6781e5a
 
10e5f03
6781e5a
 
10e5f03
 
 
6781e5a
 
10e5f03
b89eee2
6781e5a
b89eee2
0addaa1
6781e5a
d12ce0d
6781e5a
b89eee2
6781e5a
10e5f03
 
b89eee2
10e5f03
 
6781e5a
 
 
0addaa1
6781e5a
 
 
 
 
 
 
 
2f3f0e6
6781e5a
 
 
 
2f3f0e6
10e5f03
 
6781e5a
 
 
 
b89eee2
 
6781e5a
 
 
 
 
b89eee2
6781e5a
 
 
 
 
 
 
 
b89eee2
 
6781e5a
10e5f03
 
 
 
7caafe1
10e5f03
 
 
 
b89eee2
6781e5a
 
10e5f03
b89eee2
6781e5a
b89eee2
 
 
 
 
 
 
 
 
10e5f03
 
 
 
 
0680865
10e5f03
 
0680865
10e5f03
 
 
 
 
b89eee2
6781e5a
 
10e5f03
 
b89eee2
 
 
6781e5a
10e5f03
6781e5a
b89eee2
 
6781e5a
7caafe1
b89eee2
10e5f03
b89eee2
 
 
6781e5a
b89eee2
 
6781e5a
 
 
 
 
b89eee2
 
6781e5a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from __future__ import annotations

import functools
import os
import tempfile
import torch
import spaces
import gradio as gr
from PIL import Image
from gradio_imageslider import ImageSlider
from pathlib import Path
from gradio.utils import get_cache_folder

class Examples(gr.helpers.Examples):
    def __init__(self, *args, directory_name=None, **kwargs):
        super().__init__(*args, **kwargs, _initiated_directly=False)
        if directory_name is not None:
            self.cached_folder = get_cache_folder() / directory_name
            self.cached_file = Path(self.cached_folder) / "log.csv"
        self.create()

# Global variable to store loaded predictors
predictors = {}

# Available model versions
MODEL_VERSIONS = {
    "v0.3: Camera Ready Version": "yoso-normal-v0-3",
    "v1.0: NormalAnything Version": "yoso-normal-v1-0", 
    "v1.5: Best Balance": "yoso-normal-v1-5",
    "v1.8.1: Best Sharpness": "yoso-normal-v1-8-1"
}

def load_predictor(version: str = "v1.8.1: Best Sharpness"):
    """Load model predictor using torch.hub with specified version"""
    if version not in predictors:
        yoso_version = MODEL_VERSIONS[version]
        print(f"Loading StableNormal with {yoso_version}...")
        predictor = torch.hub.load("Stable-X/StableNormal", "StableNormal_turbo", 
                                   trust_repo=True, yoso_version=yoso_version)
        predictors[version] = predictor
        print(f"Successfully loaded {version}")
    return predictors[version]

def precache_all_predictors():
    """Precache all model predictors at startup"""
    print("Precaching all StableNormal predictors...")
    for version in MODEL_VERSIONS.keys():
        print(f"Precaching {version}...")
        try:
            load_predictor(version)
            print(f"✓ Successfully precached {version}")
        except Exception as e:
            print(f"✗ Failed to precache {version}: {e}")
    print("Finished precaching all predictors.")

def process_image(
    path_input: str,
    version: str = "v1.8.1: Best Sharpness",
    data_type: str = "object"
) -> tuple:
    """Process single image with specified model version"""
    if path_input is None:
        raise gr.Error("Please upload an image or select one from the gallery.")
    
    # Load the predictor for the specified version
    predictor = load_predictor(version)
        
    name_base = os.path.splitext(os.path.basename(path_input))[0]
    out_path = os.path.join(tempfile.mkdtemp(), f"{name_base}_normal_{version.replace('.', '_')}.png")

    # Load and process image
    input_image = Image.open(path_input)
    normal_image = predictor(input_image, match_input_resolution=False, data_type=data_type)
    normal_image.save(out_path)

    yield [input_image, out_path]

def create_demo():
    # Precache all predictors before creating the demo
    precache_all_predictors()
    
    # Create processing function
    process_object = spaces.GPU(process_image)

    # Define markdown content
    HEADER_MD = """
    # 🎪 StableNormal Turbo
    <p align="center">
    <a title="Website" href="https://stable-x.github.io/StableNormal/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://www.obukhov.ai/img/badges/badge-website.svg">
    </a>
    <a title="arXiv" href="https://arxiv.org/abs/2406.16864" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
    </a>
    <a title="Github" href="https://github.com/Stable-X/StableNormal" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://img.shields.io/github/stars/Stable-X/StableNormal?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
    </a>
    <a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
    </a>
    </p>
    
    Select between different YOSO Normal model versions. Each version may have different performance characteristics and quality trade-offs.
    """

    # Create interface
    demo = gr.Blocks(
        title="Stable Normal Estimation",
        css="""
            .slider .inner { width: 5px; background: #FFF; }
            .viewport { aspect-ratio: 4/3; }
            .tabs button.selected { font-size: 20px !important; color: crimson !important; }
            h1, h2, h3 { text-align: center; display: block; }
            .md_feedback li { margin-bottom: 0px !important; }
        """
    )

    with demo:
        gr.Markdown(HEADER_MD)

        with gr.Tabs() as tabs:
            # Object Tab
            with gr.Tab("Object"):
                with gr.Row():
                    with gr.Column():
                        object_input = gr.Image(label="Input Object Image", type="filepath")
                        
                        # Model version selector
                        version_dropdown = gr.Dropdown(
                            choices=list(MODEL_VERSIONS.keys()),
                            value="v1.8.1: Best Sharpness",
                            label="Model Version",
                            info="Select YOSO Normal model version"
                        )
                        
                        with gr.Row():
                            object_submit_btn = gr.Button("Compute Normal", variant="primary")
                            object_reset_btn = gr.Button("Reset")
                            
                    with gr.Column():
                        object_output_slider = ImageSlider(
                            label="Normal outputs",
                            type="filepath",
                            show_download_button=True,
                            show_share_button=True,
                            interactive=False,
                            elem_classes="slider",
                            position=0.25,
                        )

                # Examples section
                if os.path.exists(os.path.join("files", "object")):
                    Examples(
                        fn=lambda img, ver: process_object(img, ver),
                        examples=sorted([
                            os.path.join("files", "object", name)
                            for name in os.listdir(os.path.join("files", "object"))
                        ]),
                        inputs=[object_input],
                        outputs=[object_output_slider],
                        cache_examples=False,
                        directory_name="examples_object",
                        examples_per_page=50,
                    )

        # Event Handlers for Object Tab
        object_submit_btn.click(
            fn=lambda x, v: None if x else gr.Error("Please upload an image"),
            inputs=[object_input, version_dropdown],
            outputs=None,
            queue=False,
        ).success(
            fn=process_object,
            inputs=[object_input, version_dropdown],
            outputs=[object_output_slider],
        )

        object_reset_btn.click(
            fn=lambda: (None, "v1.8.1: Best Sharpness", None),
            inputs=[],
            outputs=[object_input, version_dropdown, object_output_slider],
            queue=False,
        )

    return demo

def main():
    demo = create_demo()
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
    )

if __name__ == "__main__":
    main()