import gradio as gr import torch import os import requests import io from PIL import Image API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" headers = {"Authorization": "Bearer " + os.getenv("HF_TOKEN")} def infer(prompt): def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.content image_bytes = query({ "inputs": prompt, }) with gr.Blocks() as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) # Run inference when run_button is clicked run_button.click( infer, inputs=[ prompt ], outputs=[result], ) if __name__ == "__main__": demo.launch()