File size: 4,145 Bytes
66a500b
 
 
 
f5b81b8
feab1f5
 
 
 
 
 
 
66a500b
 
 
 
 
 
 
 
 
 
 
 
 
 
f5b81b8
feab1f5
 
 
 
f5b81b8
 
 
a52d3e7
66a500b
 
a52d3e7
66a500b
a52d3e7
 
66a500b
a52d3e7
66a500b
 
a52d3e7
 
66a500b
 
 
a52d3e7
66a500b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5b81b8
66a500b
 
 
 
 
 
 
 
80621e1
 
f5b81b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66a500b
f5b81b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66a500b
f5b81b8
66a500b
f5b81b8
 
80621e1
 
a52d3e7
 
 
 
 
 
 
 
 
 
 
 
 
 
66a500b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
from huggingface_hub import login

# Replace 'YOUR_HUGGINGFACE_API_TOKEN' with your actual token
api_token = 'YOUR_HUGGINGFACE_API_TOKEN'

# Log in to Hugging Face Hub
login(token=api_token)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
):
    # Load the pipeline only when this function is called
    pipe = DiffusionPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-dev", use_auth_token=api_token
    )
    pipe.load_lora_weights("EvanZhouDev/open-genmoji", use_auth_token=api_token)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    pipe = pipe.to(device)

    # Handle seed randomization
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.manual_seed(seed)

    # Generate the image using the pipeline
    result = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt if negative_prompt else None,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
    ).images[0]

    return result, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0, variant="primary")
            result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=25,
                )

        gr.Examples(examples=examples, inputs=[prompt])

        # Run inference when run_button is clicked
        run_button.click(
            infer,
            inputs=[
                prompt,
                negative_prompt,
                seed,
                randomize_seed,
                width,
                height,
                guidance_scale,
                num_inference_steps,
            ],
            outputs=[result, seed],
        )

if __name__ == "__main__":
    demo.launch()