Lorenzoncina
commited on
Commit
·
927d6f8
1
Parent(s):
28fa904
ST feedbacks implemented
Browse files- .gitignore +1 -0
- app.py +49 -24
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
local_venv
|
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
"""
|
2 |
Description:
|
3 |
-
This script presents a Gradio demo for the ASR/ST FAMA models developed at FBK
|
4 |
|
5 |
Dependencies:
|
6 |
all the necessary dependencies are listed in requirements.txt
|
@@ -18,12 +18,21 @@ import gradio as gr
|
|
18 |
from transformers import AutoProcessor, pipeline
|
19 |
from datasets import load_dataset
|
20 |
|
21 |
-
def load_fama(model_id,
|
22 |
processor = AutoProcessor.from_pretrained(model_id)
|
23 |
|
24 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
25 |
tgt_lang = "it"
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# Force the model to start with the language tag
|
28 |
lang_tag = "<lang:{}>".format(output_lang)
|
29 |
lang_tag_id = processor.tokenizer.convert_tokens_to_ids(lang_tag)
|
@@ -47,15 +56,11 @@ def load_audio_file(audio_path):
|
|
47 |
y, sr = lb.load(audio_path, sr=16000, mono=True)
|
48 |
return y
|
49 |
|
50 |
-
def transcribe(audio, task_type, model_id,
|
51 |
"""
|
52 |
Function called by gradio interface. It runs model inference on an audio sample
|
53 |
"""
|
54 |
-
|
55 |
-
if cache_key not in model_cache:
|
56 |
-
model_cache[cache_key] = load_fama(model_id, output_lang)
|
57 |
-
|
58 |
-
pipeline = model_cache[cache_key]
|
59 |
|
60 |
if isinstance(audio, str) and os.path.isfile(audio):
|
61 |
#load the audio with Librosa
|
@@ -66,33 +71,46 @@ def transcribe(audio, task_type, model_id, output_lang):
|
|
66 |
result = pipeline(audio)
|
67 |
return result["text"]
|
68 |
|
69 |
-
|
70 |
def update_model_options(task_type):
|
71 |
if task_type == "ST":
|
72 |
-
|
|
|
|
|
|
|
73 |
else:
|
74 |
-
|
75 |
"FBK-MT/fama-small",
|
76 |
"FBK-MT/fama-medium",
|
77 |
"FBK-MT/fama-small-asr",
|
78 |
"FBK-MT/fama-medium-asr"
|
79 |
-
]
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# Language options (languages supported by FAMA models)
|
82 |
language_choices = ["en", "it"]
|
83 |
|
84 |
-
# Cache loaded models to avoid reloading
|
85 |
-
model_cache = {}
|
86 |
|
87 |
if __name__ == "__main__":
|
88 |
|
89 |
with gr.Blocks() as iface:
|
90 |
-
gr.Markdown("""## FAMA ASR and ST\nSimple Automatic Speech Recognition and Speech Translation demo powered by FAMA models, developed at FBK. \
|
91 |
More informations about FAMA models can be found here: https://huggingface.co/collections/FBK-MT/fama-683425df3fb2b3171e0cdc9e""")
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
|
97 |
model_input = gr.Radio(choices=[
|
98 |
"FBK-MT/fama-small",
|
@@ -101,13 +119,20 @@ if __name__ == "__main__":
|
|
101 |
"FBK-MT/fama-medium-asr"
|
102 |
], value="FBK-MT/fama-small", label="Select a FAMA model")
|
103 |
|
104 |
-
lang_input = gr.Dropdown(choices=language_choices, value="it", label="Transcription language")
|
105 |
-
|
106 |
output = gr.Textbox(label="Transcription")
|
107 |
|
108 |
-
task_type_input.change(fn=update_model_options, inputs=task_type_input, outputs=model_input)
|
109 |
-
|
110 |
transcribe_btn = gr.Button("Transcribe")
|
|
|
|
|
|
|
111 |
transcribe_btn.click(fn=transcribe, inputs=[audio_input, task_type_input, model_input, lang_input], outputs=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
iface.launch()
|
|
|
1 |
"""
|
2 |
Description:
|
3 |
+
This script presents a Gradio demo for the ASR/ST FAMA models developed at FBK.
|
4 |
|
5 |
Dependencies:
|
6 |
all the necessary dependencies are listed in requirements.txt
|
|
|
18 |
from transformers import AutoProcessor, pipeline
|
19 |
from datasets import load_dataset
|
20 |
|
21 |
+
def load_fama(model_id, input_lang, task_type):
|
22 |
processor = AutoProcessor.from_pretrained(model_id)
|
23 |
|
24 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
25 |
tgt_lang = "it"
|
26 |
|
27 |
+
#select the right lang depending by Utterance lang and Task type
|
28 |
+
output_lang = ""
|
29 |
+
if task_type == "ASR":
|
30 |
+
output_lang = input_lang
|
31 |
+
elif task_type == "ST" and input_lang == "it":
|
32 |
+
output_lang = "en"
|
33 |
+
elif task_type == "ST" and input_lang == "en":
|
34 |
+
output_lang = "it"
|
35 |
+
|
36 |
# Force the model to start with the language tag
|
37 |
lang_tag = "<lang:{}>".format(output_lang)
|
38 |
lang_tag_id = processor.tokenizer.convert_tokens_to_ids(lang_tag)
|
|
|
56 |
y, sr = lb.load(audio_path, sr=16000, mono=True)
|
57 |
return y
|
58 |
|
59 |
+
def transcribe(audio, task_type, model_id, input_lang):
|
60 |
"""
|
61 |
Function called by gradio interface. It runs model inference on an audio sample
|
62 |
"""
|
63 |
+
pipeline = load_fama(model_id, input_lang, task_type)
|
|
|
|
|
|
|
|
|
64 |
|
65 |
if isinstance(audio, str) and os.path.isfile(audio):
|
66 |
#load the audio with Librosa
|
|
|
71 |
result = pipeline(audio)
|
72 |
return result["text"]
|
73 |
|
74 |
+
|
75 |
def update_model_options(task_type):
|
76 |
if task_type == "ST":
|
77 |
+
model_choices = ["FBK-MT/fama-small", "FBK-MT/fama-medium"]
|
78 |
+
default_model = "FBK-MT/fama-small"
|
79 |
+
button_label = "Translate"
|
80 |
+
textbox_label = "Translation"
|
81 |
else:
|
82 |
+
model_choices = [
|
83 |
"FBK-MT/fama-small",
|
84 |
"FBK-MT/fama-medium",
|
85 |
"FBK-MT/fama-small-asr",
|
86 |
"FBK-MT/fama-medium-asr"
|
87 |
+
]
|
88 |
+
default_model = "FBK-MT/fama-small"
|
89 |
+
button_label = "Transcribe"
|
90 |
+
textbox_label = "Transcription"
|
91 |
+
|
92 |
+
return (
|
93 |
+
gr.update(choices=model_choices, value=default_model),
|
94 |
+
gr.update(value=button_label),
|
95 |
+
gr.update(label=textbox_label)
|
96 |
+
)
|
97 |
+
|
98 |
+
|
99 |
# Language options (languages supported by FAMA models)
|
100 |
language_choices = ["en", "it"]
|
101 |
|
|
|
|
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
|
105 |
with gr.Blocks() as iface:
|
106 |
+
gr.Markdown("""## FAMA ASR and ST\nSimple Automatic Speech Recognition and Speech Translation demo for English and Italian powered by FAMA models, developed at FBK. \
|
107 |
More informations about FAMA models can be found here: https://huggingface.co/collections/FBK-MT/fama-683425df3fb2b3171e0cdc9e""")
|
108 |
+
#with gr.Row():
|
109 |
+
audio_input = gr.Audio(type="filepath", label="Upload or record audio")
|
110 |
+
#task_type_input = gr.Radio(choices=["ASR", "ST"], value="ASR", label="Select task type")
|
111 |
+
|
112 |
+
lang_input = gr.Dropdown(choices=language_choices, value="it", label="Utterance Language")
|
113 |
+
task_type_input = gr.Radio(choices=["ASR", "ST"], value="ASR", label="Select task type")
|
114 |
|
115 |
model_input = gr.Radio(choices=[
|
116 |
"FBK-MT/fama-small",
|
|
|
119 |
"FBK-MT/fama-medium-asr"
|
120 |
], value="FBK-MT/fama-small", label="Select a FAMA model")
|
121 |
|
|
|
|
|
122 |
output = gr.Textbox(label="Transcription")
|
123 |
|
|
|
|
|
124 |
transcribe_btn = gr.Button("Transcribe")
|
125 |
+
#Dinamically change object when task changes
|
126 |
+
task_type_input.change(fn=update_model_options, inputs=task_type_input, outputs=[model_input, transcribe_btn, output])
|
127 |
+
|
128 |
transcribe_btn.click(fn=transcribe, inputs=[audio_input, task_type_input, model_input, lang_input], outputs=output)
|
129 |
+
|
130 |
+
gr.Markdown(""" ### Instructions: \n
|
131 |
+
1 - Load an audio file or record yourself talking with a microphone \n
|
132 |
+
2 - Specify the language of the utterance (FAMA supports English and Italian)\n
|
133 |
+
3 - Select the task to run: Speech recognition or Speech Translation. \n
|
134 |
+
4 - Select a FAMA model among the available ones \n
|
135 |
+
4 - Click on Transcribe/Translate
|
136 |
+
""")
|
137 |
|
138 |
iface.launch()
|