Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import json | |
import base64 | |
from PIL import Image, ImageDraw, ImageFont | |
import io | |
def process_with_openrouter(image, prompt, api_key, model="qwen/qwen2.5-vl-32b-instruct", temperature=0.5): | |
"""Process image with OpenRouter API for object detection""" | |
if not api_key: | |
return "Please enter your OpenRouter API key", "error" | |
if image is None: | |
return "Please upload an image", "error" | |
try: | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
img_base64 = base64.b64encode(buffered.getvalue()).decode() | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
data = { | |
"model": model, | |
"messages": [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": prompt}, | |
{ | |
"type": "image_url", | |
"image_url": {"url": f"data:image/png;base64,{img_base64}"} | |
} | |
] | |
} | |
], | |
"temperature": temperature | |
} | |
response = requests.post( | |
"https://openrouter.ai/api/v1/chat/completions", | |
headers=headers, | |
json=data, | |
timeout=60 | |
) | |
if response.status_code == 200: | |
result = response.json() | |
content = result['choices'][0]['message']['content'] | |
if '```json' in content: | |
content = content.split('```json')[1].split('```')[0].strip() | |
elif '```' in content: | |
content = content.split('```')[1].split('```')[0].strip() | |
return content, None | |
else: | |
return f"Error: {response.status_code} - {response.text}", "error" | |
except Exception as e: | |
return f"Error processing request: {str(e)}", "error" | |
def draw_bounding_boxes(image, detections): | |
"""Draw bounding boxes with class names only, same color per class""" | |
if not detections or len(detections) == 0: | |
return image | |
annotated_image = image.copy() | |
draw = ImageDraw.Draw(annotated_image) | |
try: | |
font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 16) | |
except: | |
font = ImageFont.load_default() | |
# Predefined colors for different classes | |
class_colors = { | |
"Class I": "#FF0000", # Red | |
"Class II": "#00FF00", # Green | |
"Class III": "#0000FF", # Blue | |
"Class IV": "#FFFF00", # Yellow | |
"Class V": "#FF00FF", # Magenta | |
"Class VI": "#00FFFF", # Cyan | |
"Class VII": "#FFA500", # Orange | |
"Class VIII": "#800080", # Purple | |
"Class IX": "#008000", # Dark Green | |
"Class X": "#FF1493", # Deep Pink | |
} | |
# Fallback colors if more than 10 classes | |
fallback_colors = ["#8B4513", "#2F4F4F", "#DC143C", "#00CED1", "#FF4500", "#DA70D6", "#32CD32", "#FF6347"] | |
for i, detection in enumerate(detections): | |
if all(key in detection for key in ['x', 'y', 'width', 'height']): | |
x = detection['x'] * image.width | |
y = detection['y'] * image.height | |
width = detection['width'] * image.width | |
height = detection['height'] * image.height | |
# Get class name - this is what we'll display | |
class_name = detection.get('class', f'Class {i+1}') | |
x1, y1 = int(x), int(y) | |
x2, y2 = int(x + width), int(y + height) | |
x1 = max(0, min(x1, image.width)) | |
y1 = max(0, min(y1, image.height)) | |
x2 = max(0, min(x2, image.width)) | |
y2 = max(0, min(y2, image.height)) | |
# Get consistent color for this class | |
if class_name in class_colors: | |
color = class_colors[class_name] | |
else: | |
# Use hash of class name to get consistent color | |
color_index = hash(class_name) % len(fallback_colors) | |
color = fallback_colors[color_index] | |
# Draw bounding box | |
draw.rectangle([x1, y1, x2, y2], outline=color, width=4) | |
# Calculate label size | |
text_bbox = draw.textbbox((0, 0), class_name, font=font) | |
text_width = text_bbox[2] - text_bbox[0] | |
text_height = text_bbox[3] - text_bbox[1] | |
# Position label above the box, or below if no space above | |
if y1 - text_height - 6 >= 0: | |
label_y = y1 - text_height - 6 | |
else: | |
label_y = y2 + 4 | |
label_x = x1 | |
# Ensure label stays within image bounds | |
if label_x + text_width + 4 > image.width: | |
label_x = image.width - text_width - 4 | |
# Draw label background | |
draw.rectangle( | |
[label_x - 2, label_y - 2, label_x + text_width + 2, label_y + text_height + 2], | |
fill=color, | |
outline=color | |
) | |
# Draw class name | |
draw.text((label_x, label_y), class_name, fill="white", font=font) | |
return annotated_image | |
def create_detection_prompt(class_descriptions, confidence_threshold=0.5, detection_mode="specific"): | |
"""Create a detection prompt for class descriptions with condition checking""" | |
if isinstance(class_descriptions, str): | |
class_descriptions = [cls.strip() for cls in class_descriptions.split('\n') if cls.strip()] | |
# Build detection instructions | |
if detection_mode == "specific": | |
condition_text = "ONLY detect objects that match these class descriptions and their conditions. Ignore all other objects:" | |
elif detection_mode == "include": | |
condition_text = "Detect objects matching these class descriptions AND any other objects you can identify:" | |
else: # "exclude" | |
condition_text = "Detect all objects EXCEPT those matching these class descriptions. Avoid detecting:" | |
# Format each class description | |
class_specs = [] | |
for i, description in enumerate(class_descriptions, 1): | |
# Parse class name and description if formatted as "Class Name: description" | |
if ':' in description: | |
class_name, class_desc = description.split(':', 1) | |
class_name = class_name.strip() | |
class_desc = class_desc.strip() | |
class_specs.append(f"Class {i} ({class_name}): {class_desc}") | |
else: | |
class_specs.append(f"Class {i}: {description}") | |
classes_text = "\n".join(class_specs) if class_specs else "No class descriptions provided" | |
prompt = f"""{condition_text} | |
{classes_text} | |
Detection Instructions: | |
- Analyze each object against the class descriptions above | |
- Check if objects meet the specified conditions for each class | |
- Only include detections with confidence above {confidence_threshold} | |
- Assign objects to the most appropriate class based on the descriptions | |
SCALE/RULER DETECTION FOR CRACK MEASUREMENT: | |
- First look for scales, rulers, measurement tools, or reference objects in the image | |
- If found, identify the scale markings and determine the measurement reference | |
- Use the scale to calculate actual crack widths in millimeters or appropriate units | |
- For crack classifications, measure crack width using the identified scale | |
- Include actual measurements in your analysis (e.g., "2.5mm crack width based on ruler scale") | |
- If no scale is visible, estimate crack width relative to common objects or provide qualitative assessment | |
Output a JSON list where each entry contains: | |
- "x": normalized x coordinate (0-1) of top-left corner | |
- "y": normalized y coordinate (0-1) of top-left corner | |
- "width": normalized width (0-1) of the bounding box | |
- "height": normalized height (0-1) of the bounding box | |
- "label": brief description with confidence score | |
- "confidence": confidence score (0-1) | |
- "class": the assigned class name (e.g., "Class I", "Class II", etc.) | |
- "description": why this object matches the class criteria | |
- "class_number": the class number from the list above (1, 2, 3, etc.) | |
- "measured_width": actual crack width measurement if scale is available (e.g., "2.5mm", "1.2cm") | |
- "measurement_method": how the measurement was obtained (e.g., "ruler scale", "coin reference", "estimated") | |
Example format: | |
[{{"x": 0.1, "y": 0.2, "width": 0.3, "height": 0.4, "label": "Structural crack (0.92)", "confidence": 0.92, "class": "Class I", "description": "Crack width exceeds 2mm threshold based on ruler measurement", "class_number": 1, "measured_width": "2.5mm", "measurement_method": "ruler scale"}}]""" | |
return prompt | |
def create_interface(): | |
"""Create the Gradio interface for object detection""" | |
with gr.Blocks(title="Class-Based Object Detection", theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# π Class-Based Object Detection with Descriptions") | |
gr.Markdown("Define classes with descriptions and conditions. Objects will be classified and annotated with class names only.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("## βοΈ Configuration") | |
api_key = gr.Textbox( | |
label="OpenRouter API Key", | |
placeholder="Enter your OpenRouter API key...", | |
type="password" | |
) | |
with gr.Row(): | |
use_preset = gr.Radio( | |
choices=["Preset Model", "Custom Model"], | |
value="Preset Model", | |
label="Model Selection", | |
info="Choose preset or enter custom OpenRouter model" | |
) | |
model_preset = gr.Dropdown( | |
choices=[ | |
"qwen/qwen2.5-vl-32b-instruct", | |
"qwen/qwen-vl-max", | |
"openai/gpt-5-chat", | |
"openai/gpt-5-mini", | |
"anthropic/claude-opus-4.1", | |
"x-ai/grok-4", | |
"google/gemini-2.5-pro", | |
"google/gemini-1.5-pro", | |
"google/gemini-1.5-flash", | |
"anthropic/claude-3.5-sonnet", | |
"openai/gpt-4o", | |
"openai/gpt-4o-mini" | |
], | |
value="qwen/qwen2.5-vl-32b-instruct", | |
label="Preset Models", | |
info="Select from popular OpenRouter models", | |
visible=True | |
) | |
custom_model_input = gr.Textbox( | |
label="Custom Model ID", | |
placeholder="Enter any OpenRouter model ID (e.g., google/gemini-1.5-flash, anthropic/claude-3-haiku)", | |
visible=False, | |
info="Copy model IDs from openrouter.ai/models" | |
) | |
detection_mode = gr.Radio( | |
choices=[ | |
("Detect Only These Classes", "specific"), | |
("Include These Classes + Others", "include"), | |
("Exclude These Classes", "exclude") | |
], | |
value="specific", | |
label="Detection Mode", | |
info="How to handle the specified class descriptions" | |
) | |
class_descriptions = gr.Textbox( | |
label="Class Descriptions", | |
placeholder="""Define each class with its description and conditions, e.g.: | |
Severe Cracks: Crack width more than 2mm (use ruler/scale if present for measurement) | |
Minor Cracks: Crack width 0.5-2mm (measure using visible scale) | |
Rust Damage: Rust spots larger than 5cm in diameter | |
Concrete Spalling: Concrete spalling deeper than 1cm | |
Paint Defects: Paint peeling areas greater than 10cmΒ²""", | |
value="""Severe Cracks: Crack width more than 2mm (use ruler/scale if present for measurement) | |
Minor Cracks: Crack width 0.5-2mm (measure using visible scale) | |
Rust Damage: Rust spots larger than 5cm in diameter""", | |
lines=8, | |
info="Enter class descriptions, one per line. Format: 'Class Name: Description' or just 'Description'" | |
) | |
confidence_threshold = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.5, | |
step=0.05, | |
label="Confidence Threshold", | |
info="Minimum confidence for detection" | |
) | |
temperature = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.3, | |
step=0.05, | |
label="Temperature", | |
info="Lower values for more consistent results" | |
) | |
image_input = gr.Image( | |
type="pil", | |
label="Upload Image for Detection" | |
) | |
detect_btn = gr.Button("π Detect Objects", variant="primary", size="lg") | |
with gr.Column(scale=1): | |
gr.Markdown("## π Detection Results") | |
annotated_image = gr.Image( | |
label="Detected Objects", | |
type="pil" | |
) | |
detection_results = gr.Textbox( | |
label="Detection Details (JSON)", | |
lines=10, | |
show_copy_button=True | |
) | |
detection_summary = gr.Textbox( | |
label="Detection Summary", | |
lines=3 | |
) | |
# Show/hide model input based on selection | |
def update_model_visibility(use_preset_val): | |
if use_preset_val == "Custom Model": | |
return gr.update(visible=False), gr.update(visible=True) | |
else: | |
return gr.update(visible=True), gr.update(visible=False) | |
use_preset.change( | |
update_model_visibility, | |
inputs=[use_preset], | |
outputs=[model_preset, custom_model_input] | |
) | |
def process_detection(image, class_desc, conf_threshold, api_key_val, use_preset_val, model_preset_val, custom_model_val, temp_val, mode_val): | |
if not api_key_val: | |
return None, "β Please enter your OpenRouter API key", "No API key provided" | |
if image is None: | |
return None, "β Please upload an image", "No image uploaded" | |
if not class_desc or not class_desc.strip(): | |
return None, "β Please enter at least one class description", "No class descriptions provided" | |
# Determine which model to use | |
if use_preset_val == "Custom Model": | |
if not custom_model_val or custom_model_val.strip() == "": | |
return None, "β Please enter a custom model ID", "Custom model required" | |
final_model = custom_model_val.strip() | |
else: | |
final_model = model_preset_val | |
try: | |
prompt = create_detection_prompt(class_desc, conf_threshold, mode_val) | |
result, error = process_with_openrouter(image, prompt, api_key_val, final_model, temp_val) | |
if error: | |
return None, f"β Error: {result}", "Detection failed" | |
detections = json.loads(result) | |
if isinstance(detections, list) and len(detections) > 0: | |
annotated_img = draw_bounding_boxes(image, detections) | |
filtered_detections = [d for d in detections if d.get('confidence', 1.0) >= conf_threshold] | |
mode_descriptions = { | |
"specific": "Detecting only objects matching class descriptions", | |
"include": "Including specified classes + other objects", | |
"exclude": "Excluding objects matching class descriptions" | |
} | |
summary_text = f"β {mode_descriptions.get(mode_val, 'Detection')} - Found {len(filtered_detections)} objects\nπ€ Model: {final_model}" | |
if filtered_detections: | |
# Group by class and show counts | |
class_counts = {} | |
for det in filtered_detections: | |
class_name = det.get('class', 'unknown') | |
description = det.get('description', '') | |
confidence = det.get('confidence', 1.0) | |
if class_name not in class_counts: | |
class_counts[class_name] = { | |
'count': 0, | |
'avg_confidence': 0, | |
'descriptions': [] | |
} | |
class_counts[class_name]['count'] += 1 | |
class_counts[class_name]['avg_confidence'] += confidence | |
if description and description not in class_counts[class_name]['descriptions']: | |
class_counts[class_name]['descriptions'].append(description) | |
summary_text += "\n\nClass Detection Results:" | |
for class_name, data in class_counts.items(): | |
avg_conf = data['avg_confidence'] / data['count'] | |
summary_text += f"\nβ’ {class_name}: {data['count']} detected (avg conf: {avg_conf:.2f})" | |
return annotated_img, json.dumps(filtered_detections, indent=2), summary_text | |
else: | |
return image, "No objects detected matching class descriptions", "No detections matching criteria above confidence threshold" | |
except json.JSONDecodeError: | |
return None, f"β Invalid JSON response: {result}", "JSON parsing failed" | |
except Exception as e: | |
return None, f"β Error: {str(e)}", "Processing error" | |
detect_btn.click( | |
process_detection, | |
inputs=[image_input, class_descriptions, confidence_threshold, api_key, use_preset, model_preset, custom_model_input, temperature, detection_mode], | |
outputs=[annotated_image, detection_results, detection_summary] | |
) | |
gr.Markdown(""" | |
## π‘ Usage Tips | |
- **Specific Mode**: Only detect objects matching your class descriptions | |
- **Include Mode**: Detect your specified classes plus any other objects found | |
- **Exclude Mode**: Detect everything except objects matching your class descriptions | |
### π·οΈ Class Definition | |
**Format Options:** | |
1. `Class Name: Description` - e.g., "Severe Cracks: Crack width more than 2mm" | |
2. `Description only` - Will be automatically assigned as "Class I", "Class II", etc. | |
**Annotation Behavior:** | |
- Images show only class names (e.g., "Class I", "Class II") | |
- Same class = same color throughout the image | |
- Clean, simple visual identification | |
### π€ Model Selection | |
**Default Models (Recommended):** | |
- `qwen/qwen2.5-vl-32b-instruct` - Advanced Qwen vision model optimized for detailed analysis (Default) | |
- `qwen/qwen-vl-max` - Premium Qwen vision model with maximum capabilities | |
- `openai/gpt-5-chat` - Latest GPT-5 with advanced vision capabilities | |
- `openai/gpt-5-mini` - Faster, efficient GPT-5 variant | |
- `anthropic/claude-opus-4.1` - Next-gen Claude with superior reasoning | |
- `x-ai/grok-4` - Advanced Grok model with detailed analysis | |
**Custom Models**: Enter any OpenRouter model ID from [openrouter.ai/models](https://openrouter.ai/models) | |
### Example Class Descriptions: | |
``` | |
Severe Cracks: Crack width more than 2mm (use ruler/scale for measurement) | |
Minor Cracks: Crack width 0.5-2mm (measure using visible scale) | |
Rust Damage: Rust spots larger than 5cm in diameter | |
Concrete Spalling: Concrete spalling deeper than 1cm | |
Paint Defects: Paint peeling areas greater than 10cmΒ² | |
Water Damage: Water damage stains larger than 15cm | |
``` | |
### π Scale-Based Measurement: | |
- **Automatic Scale Detection**: The system looks for rulers, measuring tools, or reference objects | |
- **Precise Measurements**: When scales are found, actual crack widths are calculated | |
- **Measurement Methods**: Supports rulers, crack gauges, coins, or other reference objects | |
- **Enhanced Classification**: More accurate class assignment based on measured dimensions | |
- Enter one class description per line | |
- Be specific about conditions and measurements | |
- Objects will be classified and labeled with class names only | |
- Adjust confidence threshold to filter weak detections | |
- Get your API key from [openrouter.ai](https://openrouter.ai/) | |
""") | |
return demo | |
if __name__ == "__main__": | |
print("π Starting Object Detection App...") | |
demo = create_interface() | |
demo.launch(share=False, inbrowser=True) |