Spaces:
Sleeping
Sleeping
File size: 34,315 Bytes
a22e992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
#!/usr/bin/env python3
import gradio as gr
import os
import sys
import tempfile
import base64
from PIL import Image
import requests
import json
from dotenv import load_dotenv
# Import standalone image analysis tool
from image_analysis_standalone import ImageAnalysisTool
load_dotenv()
class GradioSEMAnalysis:
def __init__(self):
self.image_tool = ImageAnalysisTool()
self.base_url = "https://openrouter.ai/api/v1/chat/completions"
# Get default values from environment if available
self.default_api_key = os.getenv("OPENROUTER_API_KEY", "")
self.default_model = os.getenv("OPENROUTER_MODEL", "google/gemini-2.5-pro")
def get_default_engineer_prompt(self):
"""Default system prompt for SEM Engineer Agent"""
return """You are an expert SEM (Scanning Electron Microscopy) image analysis engineer with 15+ years of experience specializing in concrete materials and cementitious composites. Your expertise encompasses advanced microscopy techniques, cement chemistry, concrete technology, and materials characterization.
ENHANCED ANALYSIS FRAMEWORK:
**1. MICROSTRUCTURAL IDENTIFICATION & CHARACTERIZATION:**
- Identify and characterize cement hydration products with precision:
* C-S-H gel (morphology, density, distribution patterns, C/S ratio indicators)
* Ettringite needles (orientation, clustering, crystal quality, sulfate attack signs)
* Portlandite crystals (size, shape, dissolution signs, carbonation effects)
* Monosulfate (AFm phases) and other hydration products
* Unreacted cement particles (composition, hydration rim thickness)
- Analyze aggregate characteristics:
* Aggregate type identification (limestone, granite, quartzite, recycled)
* Particle morphology (angular, rounded, surface texture)
* Size distribution and grading effects
* Surface roughness and bonding potential
- Evaluate aggregate-cement paste interface (ITZ):
* Interface transition zone thickness and quality
* Bonding mechanisms and adhesion quality
* Microcracking patterns at interfaces
* Porosity gradients near aggregate surfaces
**2. ADVANCED POROSITY & PORE STRUCTURE ANALYSIS:**
- Comprehensive pore classification:
* Gel pores (<10 nm) - inferred from C-S-H texture
* Capillary pores (10 nm - 10 μm) - water-filled spaces in cement paste
* Entrapped air voids (>50 μm) - spherical voids from mixing
* Entrained air voids (10-200 μm) - engineered spherical voids
- Connectivity assessment:
* Percolation pathways affecting permeability
* Isolated vs connected porosity networks
* Tortuosity factors for transport properties
- Quantitative measurements:
* Total porosity estimation
* Pore size distribution patterns
* Air void spacing factor (critical for freeze-thaw resistance)
* Specific surface area implications
**3. CONCRETE QUALITY & DURABILITY ASSESSMENT:**
- Hydration quality evaluation:
* Degree of cement hydration assessment
* Hydration product density and uniformity
* Water-cement ratio effects on microstructure
- Defect identification:
* Microcracks (width, orientation, load-induced vs shrinkage)
* Plastic shrinkage cracks
* Drying shrinkage effects
* Aggregate-paste debonding
* Bleeding channels and segregation
- Durability indicators:
* Carbonation depth and progression
* Chloride penetration pathways
* Sulfate attack evidence (ettringite formation)
* Alkali-silica reaction (ASR) gel formation
* Freeze-thaw damage (paste deterioration, aggregate cracking)
**4. QUANTITATIVE ANALYSIS & MEASUREMENTS:**
- Morphometric analysis:
* Aggregate size distribution and gradation effects
* Cement paste thickness measurements
* ITZ thickness quantification (typically 10-50 μm)
* Crack width and length measurements
- Phase quantification:
* Volume fractions of cement paste, aggregate, and voids
* Water-cement ratio estimation from porosity
* Degree of hydration indicators
* Air content and void characteristics
- Statistical confidence:
* Measurement uncertainties and sampling representativeness
* Stereological corrections for 3D interpretation
* Multiple field analysis for statistical validity
**5. ENGINEERING PERFORMANCE PREDICTIONS:**
- Mechanical properties correlation:
* Compressive strength based on cement paste density and ITZ quality
* Tensile strength and modulus of elasticity relationships
* Fatigue and creep behavior indicators
* Failure mode predictions (aggregate vs paste failure)
- Durability performance:
* Permeability and transport property estimations
* Freeze-thaw resistance based on air void system
* Carbonation resistance from paste density
* Chloride diffusion coefficient predictions
* Service life estimations
- Mix design optimization:
* Water-cement ratio adjustments
* Aggregate gradation recommendations
* Admixture effectiveness (air entrainers, plasticizers)
* Supplementary cementitious material (SCM) effects
**TECHNICAL REPORTING STANDARDS:**
- Use precise concrete technology terminology with SI units
- Reference relevant standards (ASTM C457, ASTM C1723, EN 480-11, ACI guidelines)
- Quantify observations with statistical confidence
- Correlate microstructural features to concrete performance
- Consider cement type effects (Portland, blended, high-performance)
- Account for aggregate type and size effects
- Assess curing condition influences on microstructure
Provide a comprehensive technical report following the framework above, emphasizing accuracy, precision, and concrete engineering relevance."""
def get_enhanced_engineer_prompt(self, custom_prompt, image_data, focus_area=None):
"""Build complete engineer prompt with custom content and image data"""
prompt_with_data = f"""{custom_prompt}
Focus Area: {focus_area if focus_area else "Comprehensive analysis"}
Image Analysis Data:
- Dimensions: {image_data.get('image_properties', {}).get('width', 'N/A')} x {image_data.get('image_properties', {}).get('height', 'N/A')} pixels
- Estimated Porosity: {image_data.get('porosity_analysis', {}).get('estimated_porosity_percent', 'N/A')}%
- Particle Count: {image_data.get('particle_analysis', {}).get('number_of_particles', 'N/A')}
- Average Particle Area: {image_data.get('particle_analysis', {}).get('average_particle_area', 'N/A')} pixels²
- Texture Variance: {image_data.get('texture_features', {}).get('texture_variance', 'N/A')}
Provide a comprehensive technical report following the framework above, emphasizing accuracy, precision, and engineering relevance.
"""
return prompt_with_data
def get_default_quality_prompt(self):
"""Default system prompt for Quality Checker Agent"""
return """You are a senior concrete technology specialist and certified petrographer with extensive experience in concrete microstructural analysis, SEM validation, and compliance with international concrete testing standards. Your expertise includes ACI petrographic certification, ASTM concrete analysis standards, and peer review of concrete research publications. Your role is to ensure the highest standards of scientific rigor and technical accuracy in concrete analysis.
COMPREHENSIVE VALIDATION FRAMEWORK:
**1. TECHNICAL ACCURACY VERIFICATION:**
- Concrete microstructural correctness:
* Validate identification of cement hydration products (C-S-H, CH, ettringite, AFm)
* Verify aggregate identification and classification accuracy
* Check ITZ characterization against established research
* Confirm concrete technology principles and cement chemistry
- Standard compliance verification:
* Cross-check terminology with ASTM C125, C856, C457 definitions
* Verify air void analysis against ASTM C457 methodology
* Confirm petrographic analysis standards (ASTM C856)
* Validate durability assessment approaches (ACI 201, 214)
- Quantitative validation:
* Check measurement units, scales, and magnification accuracy
* Assess statistical validity of porosity and void measurements
* Verify aggregate-paste ratio estimations
* Validate performance correlations with concrete properties
**2. COMPLETENESS & DEPTH ASSESSMENT:**
- Concrete analysis coverage:
* Ensure comprehensive cement paste, aggregate, and ITZ evaluation
* Verify adequate air void system characterization
* Check for complete durability indicator assessment
* Assess balance between hydration products and defect analysis
- Missing elements identification:
* Identify overlooked concrete-specific features
* Note missing w/c ratio or mix design implications
* Flag absent durability mechanism discussions
* Highlight missing performance-microstructure correlations
* Check for adequate aggregate reactivity assessment
**3. METHODOLOGICAL RIGOR EVALUATION:**
- Concrete petrographic methodology:
* Assess systematic concrete analysis approach
* Evaluate air void measurement methodology (ASTM C457 compliance)
* Check statistical representativeness for concrete heterogeneity
* Verify appropriate magnification selection for different phases
- Scientific methodology:
* Confirm proper concrete microscopy interpretation principles
* Validate cement chemistry and hydration logic
* Assess appropriate confidence in durability predictions
* Check for potential misidentification of concrete phases
* Verify adequate consideration of concrete age and curing effects
**4. ENGINEERING RELEVANCE & UTILITY:**
- Concrete engineering applicability:
* Evaluate usefulness for concrete mix design optimization
* Assess relevance to structural design and construction
* Check connection between microstructure and concrete performance
* Verify appropriateness of durability and service life predictions
- Industry standards compliance:
* Compare against ACI, ASTM, EN, and national concrete codes
* Check alignment with concrete petrographic best practices
* Verify appropriate consideration of exposure conditions
* Assess compliance with concrete durability requirements
**5. COMMUNICATION QUALITY:**
- Concrete technical communication:
* Assess clarity and precision of concrete terminology
* Evaluate logical flow from microstructure to performance
* Check appropriate use of concrete technology language
* Verify adequate detail for concrete engineers and technologists
- Professional standards:
* Confirm appropriate level of certainty in concrete assessments
* Check for proper qualification of analysis limitations
* Assess professional tone suitable for concrete industry
* Verify appropriate cautionary statements for durability predictions
**VALIDATION SCORING SYSTEM:**
Rate each category (1-10 scale):
- Technical Accuracy: ___/10
- Completeness: ___/10
- Methodological Rigor: ___/10
- Engineering Relevance: ___/10
- Communication Quality: ___/10
- Overall Score: ___/10
**REVISION REQUIREMENTS:**
Acceptance Criteria: Overall score ≥ 8.0 AND all individual categories ≥ 7.0
If revision required, provide:
1. Specific technical issues requiring correction
2. Missing analysis components to be added
3. Methodological improvements needed
4. Enhanced engineering context required
5. Communication improvements suggested
**VALIDATION REPORT FORMAT:**
Provide systematic evaluation following the framework above, conclude with:
- Overall confidence level (High/Medium/Low)
- Key strengths and improvement areas
- Suitability for engineering applications
- FINAL DECISION: ACCEPT or REQUIRES_REVISION
If REQUIRES_REVISION, provide detailed, actionable feedback for improvement."""
def get_enhanced_quality_prompt(self, custom_prompt, engineer_analysis):
"""Build complete quality prompt with custom content and analysis"""
return f"""{custom_prompt}
**ANALYSIS TO REVIEW:**
{engineer_analysis}
"""
def analyze_image_with_api(self, image_path, prompt, api_key, model, max_retries=2):
"""Send image analysis request to OpenRouter API"""
if not api_key or not api_key.strip():
return "Error: API key is required. Please enter your OpenRouter API key."
for attempt in range(max_retries + 1):
try:
with open(image_path, "rb") as image_file:
image_data = base64.b64encode(image_file.read()).decode('utf-8')
headers = {
"Authorization": f"Bearer {api_key.strip()}",
"Content-Type": "application/json",
"HTTP-Referer": "https://concrete-sem-analysis.local",
"X-Title": "Concrete SEM Analysis App"
}
payload = {
"model": model,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_data}"
}
}
]
}
],
"max_tokens": 4000,
"temperature": 0.1
}
response = requests.post(self.base_url, headers=headers, json=payload, timeout=90)
response.raise_for_status()
return response.json()['choices'][0]['message']['content']
except requests.exceptions.Timeout:
if attempt < max_retries:
continue
else:
return f"API Error: Request timed out after {max_retries + 1} attempts"
except requests.exceptions.RequestException as e:
if attempt < max_retries:
continue
else:
return f"API Error: {str(e)}"
except Exception as e:
return f"Error: {str(e)}"
return "Error: Maximum retry attempts exceeded"
def run_analysis(self, image, focus_area, enable_quality_check, enable_revision_loop, engineer_prompt, quality_prompt, api_key, model, max_revisions, progress=gr.Progress()):
"""Main analysis function for Gradio interface with revision loop"""
if image is None:
return "Please upload an image first.", "", ""
if not api_key or not api_key.strip():
return "Please enter your OpenRouter API key.", "", ""
try:
# Save uploaded image to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as temp_file:
if hasattr(image, 'save'):
image.save(temp_file.name)
else:
# Handle numpy array or other formats
Image.fromarray(image).save(temp_file.name)
temp_image_path = temp_file.name
progress(0.1, desc="Processing image...")
# Step 1: Basic image analysis
image_data = self.image_tool._run(temp_image_path)
if "error" in image_data:
return f"Image processing error: {image_data['error']}", "", ""
# Format basic image data
image_info = f"""
**Image Properties:**
- Dimensions: {image_data.get('image_properties', {}).get('width', 'N/A')} x {image_data.get('image_properties', {}).get('height', 'N/A')} pixels
- Mean Intensity: {image_data.get('image_properties', {}).get('mean_intensity', 'N/A'):.1f}
- Estimated Porosity: {image_data.get('porosity_analysis', {}).get('estimated_porosity_percent', 'N/A'):.1f}%
- Detected Particles: {image_data.get('particle_analysis', {}).get('number_of_particles', 'N/A')}
- Average Particle Diameter: {image_data.get('particle_analysis', {}).get('average_equivalent_diameter', 'N/A'):.1f} pixels
"""
# Revision loop implementation
revision_count = 0
engineer_analysis = None
revision_feedback = None
quality_report = ""
# Determine if we should use revision loop
use_revision_loop = enable_quality_check and enable_revision_loop
max_attempts = max_revisions if use_revision_loop else 0
while revision_count <= max_attempts:
# Step 2: SEM Engineer Analysis
if revision_count == 0:
progress(0.3, desc="Running SEM Engineer analysis...")
else:
progress(0.3 + (revision_count * 0.2), desc=f"SEM Engineer revision {revision_count + 1}/{max_revisions + 1}...")
# Build engineer prompt with revision feedback if needed
if revision_feedback:
enhanced_prompt = f"""{engineer_prompt}
**REVISION REQUIREMENTS:**
The quality checker has identified the following issues that need to be addressed in your analysis:
{revision_feedback}
Please revise your analysis to address these specific concerns while maintaining the technical depth and accuracy expected for concrete SEM analysis.
Focus Area: {focus_area if focus_area else "Comprehensive analysis"}
Image Analysis Data:
- Dimensions: {image_data.get('image_properties', {}).get('width', 'N/A')} x {image_data.get('image_properties', {}).get('height', 'N/A')} pixels
- Estimated Porosity: {image_data.get('porosity_analysis', {}).get('estimated_porosity_percent', 'N/A')}%
- Particle Count: {image_data.get('particle_analysis', {}).get('number_of_particles', 'N/A')}
- Average Particle Area: {image_data.get('particle_analysis', {}).get('average_particle_area', 'N/A')} pixels²
- Texture Variance: {image_data.get('texture_features', {}).get('texture_variance', 'N/A')}"""
else:
enhanced_prompt = self.get_enhanced_engineer_prompt(engineer_prompt, image_data, focus_area)
engineer_analysis = self.analyze_image_with_api(temp_image_path, enhanced_prompt, api_key, model)
# Check for API errors
if "Error:" in engineer_analysis or "API Error:" in engineer_analysis:
break
# Step 3: Quality Checker Validation (if enabled)
if enable_quality_check:
progress(0.5 + (revision_count * 0.15), desc="Quality Checker validation...")
complete_quality_prompt = self.get_enhanced_quality_prompt(quality_prompt, engineer_analysis)
quality_report = self.analyze_image_with_api(temp_image_path, complete_quality_prompt, api_key, model)
# Check for API errors in quality report
if "API Error:" in quality_report or "Error:" in quality_report:
quality_report += f"\n\n⚠️ Quality checker failed due to API error. Accepting current analysis after {revision_count + 1} attempt(s)."
break
elif "DECISION: ACCEPT" in quality_report:
quality_report += f"\n\n✅ Analysis ACCEPTED after {revision_count + 1} attempt(s)"
break
elif "DECISION: REQUIRES_REVISION" in quality_report and revision_count < max_attempts and use_revision_loop:
quality_report += f"\n\n🔄 Revision required. Attempt {revision_count + 1}/{max_attempts + 1}"
# Extract feedback for next revision
revision_feedback = self._extract_revision_feedback(quality_report)
revision_count += 1
else:
if revision_count >= max_attempts and use_revision_loop:
quality_report += f"\n\n⚠️ Maximum revisions ({max_attempts + 1}) reached. Proceeding with current analysis."
elif "DECISION: REQUIRES_REVISION" in quality_report and not use_revision_loop:
quality_report += f"\n\n📝 Quality checker suggests improvements, but revision loop is disabled."
break
else:
# No quality check enabled, accept after first attempt
break
progress(1.0, desc="Analysis complete!")
# Clean up temporary file
os.unlink(temp_image_path)
# Add revision summary to image info
if enable_quality_check:
status_text = "ACCEPTED" if "DECISION: ACCEPT" in quality_report else "COMPLETED WITH LIMITATIONS"
if not use_revision_loop and "DECISION: REQUIRES_REVISION" in quality_report:
status_text = "COMPLETED (REVISION LOOP DISABLED)"
image_info += f"""
**Analysis Summary:**
- Total Analysis Attempts: {revision_count + 1}
- Revision Loop: {"Enabled" if use_revision_loop else "Disabled"}
- Maximum Revisions Allowed: {max_attempts if use_revision_loop else "N/A"}
- Final Status: {status_text}
"""
return image_info, engineer_analysis, quality_report
except Exception as e:
return f"Error during analysis: {str(e)}", "", ""
def _extract_revision_feedback(self, validation_report):
"""Extract specific feedback for revision from validation report"""
lines = validation_report.split('\n')
feedback_section = []
in_revision_section = False
for line in lines:
if "REVISION REQUIREMENTS" in line or "what needs to be improved" in line or "If REQUIRES_REVISION" in line:
in_revision_section = True
elif "FINAL VALIDATION" in line or "DECISION:" in line:
in_revision_section = False
elif in_revision_section and line.strip():
feedback_section.append(line.strip())
if feedback_section:
return '\n'.join(feedback_section)
else:
# Fallback: return the entire validation report
return validation_report
def create_gradio_interface():
"""Create and configure Gradio interface"""
# Initialize analysis class
analyzer = GradioSEMAnalysis()
# Define the interface
with gr.Blocks(
title="Concrete SEM Analysis Tool",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.main-header {
text-align: center;
color: #2c3e50;
margin-bottom: 20px;
}
.analysis-section {
margin: 10px 0;
padding: 15px;
border-radius: 8px;
background-color: #f8f9fa;
}
"""
) as interface:
gr.Markdown(
"""
# 🔬 Concrete SEM Analysis Tool
### Advanced Scanning Electron Microscopy Analysis for Concrete Materials
Upload a concrete SEM image to receive comprehensive microstructural analysis from expert AI agents specialized in concrete technology.
""",
elem_classes=["main-header"]
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## 📤 Input Configuration")
# API Configuration Section
with gr.Accordion("🔑 API Configuration", open=True):
api_key_input = gr.Textbox(
label="OpenRouter API Key",
type="password",
value=analyzer.default_api_key,
placeholder="Enter your OpenRouter API key...",
info="Get your API key from https://openrouter.ai/"
)
model_input = gr.Dropdown(
label="AI Model",
choices=[
"google/gemini-2.5-pro",
"google/gemini-2.5-flash",
"google/gemini-pro-1.5",
"google/gemini-flash-1.5",
"anthropic/claude-3.5-sonnet",
"anthropic/claude-3.5-haiku",
"anthropic/claude-3-opus",
"anthropic/claude-3-sonnet",
"anthropic/claude-3-haiku",
"openai/gpt-4o",
"openai/gpt-4o-mini",
"openai/gpt-4-vision-preview",
"openai/gpt-4-turbo",
"meta-llama/llama-3.2-90b-vision-instruct",
"meta-llama/llama-3.2-11b-vision-instruct",
"qwen/qwen-2-vl-72b-instruct",
"qwen/qwen2-vl-7b-instruct",
"microsoft/phi-3.5-vision-instruct",
"cognitivecomputations/dolphin-vision-72b",
"mistralai/pixtral-12b",
"liuhaotian/llava-v1.6-34b",
"bytedance/hyper-sd"
],
value=analyzer.default_model,
allow_custom_value=True,
info="Select or type any vision-capable AI model from OpenRouter"
)
# Image Upload Section
image_input = gr.Image(
label="Upload Concrete SEM Image",
type="pil",
height=250
)
# Analysis Configuration
focus_area = gr.Dropdown(
label="Analysis Focus",
choices=[
"Comprehensive analysis",
"Cement paste and hydration products",
"Aggregate characteristics and ITZ",
"Air void system analysis",
"Durability indicators",
"Crack and defect analysis",
"Mix design evaluation"
],
value="Comprehensive analysis"
)
enable_quality_check = gr.Checkbox(
label="Enable Quality Validation",
value=True,
info="Run additional quality checker for validation"
)
enable_revision_loop = gr.Checkbox(
label="Enable Revision Loop",
value=True,
info="Allow quality checker to request analysis improvements"
)
max_revisions_input = gr.Slider(
label="Maximum Revisions",
minimum=1,
maximum=5,
step=1,
value=2,
info="Maximum number of revision attempts (only active when revision loop is enabled)"
)
analyze_btn = gr.Button(
"🔬 Start Analysis",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
gr.Markdown("## 📊 Analysis Results & Prompt Configuration")
with gr.Tab("Analysis Results"):
with gr.Tab("Image Properties"):
image_info_output = gr.Markdown(
label="Basic Image Analysis",
elem_classes=["analysis-section"]
)
with gr.Tab("SEM Engineer Analysis"):
engineer_output = gr.Markdown(
label="Expert SEM Analysis",
elem_classes=["analysis-section"]
)
with gr.Tab("Quality Validation"):
quality_output = gr.Markdown(
label="Quality Assurance Report",
elem_classes=["analysis-section"]
)
with gr.Tab("System Prompts"):
gr.Markdown("### 🤖 Customize AI Agent Prompts")
with gr.Accordion("SEM Engineer Agent Prompt", open=False):
engineer_prompt_input = gr.Textbox(
label="Engineer System Prompt",
value=analyzer.get_default_engineer_prompt(),
lines=15,
max_lines=25,
placeholder="Enter custom system prompt for SEM Engineer Agent...",
info="This prompt defines the SEM Engineer's expertise and analysis framework"
)
engineer_reset_btn = gr.Button(
"↻ Reset to Default",
size="sm",
variant="secondary"
)
with gr.Accordion("Quality Checker Agent Prompt", open=False):
quality_prompt_input = gr.Textbox(
label="Quality Checker System Prompt",
value=analyzer.get_default_quality_prompt(),
lines=15,
max_lines=25,
placeholder="Enter custom system prompt for Quality Checker Agent...",
info="This prompt defines the Quality Checker's validation criteria and approach"
)
quality_reset_btn = gr.Button(
"↻ Reset to Default",
size="sm",
variant="secondary"
)
# Connect the analysis function
analyze_btn.click(
fn=analyzer.run_analysis,
inputs=[image_input, focus_area, enable_quality_check, enable_revision_loop, engineer_prompt_input, quality_prompt_input, api_key_input, model_input, max_revisions_input],
outputs=[image_info_output, engineer_output, quality_output],
show_progress=True
)
# Connect reset buttons
engineer_reset_btn.click(
fn=lambda: analyzer.get_default_engineer_prompt(),
outputs=[engineer_prompt_input]
)
quality_reset_btn.click(
fn=lambda: analyzer.get_default_quality_prompt(),
outputs=[quality_prompt_input]
)
gr.Markdown(
"""
---
### 📝 Usage Instructions:
1. **Configure API**: Enter your OpenRouter API key and select AI model
2. **Upload Image**: Select your concrete SEM image file (JPG, PNG, etc.)
3. **Choose Focus**: Select specific analysis focus (cement paste, aggregates, air voids, etc.)
4. **Quality Check**: Enable for additional validation (recommended)
5. **Revision Loop**: Enable/disable automatic analysis improvements
6. **Set Max Revisions**: Choose maximum revision attempts (1-5, default: 2)
7. **Customize Prompts** (Optional): Edit system prompts in "System Prompts" tab
8. **Analyze**: Click the analysis button and wait for results
### 🎯 Features:
- **Flexible API Access**: Use your own OpenRouter API key and choose models
- **20+ Vision Models**: Support for Google, Anthropic, OpenAI, Meta, Alibaba, Microsoft, Mistral
- **Latest AI Technology**: Gemini 2.5 Pro, Claude 3.5, GPT-4o, Llama 3.2 Vision, Qwen 2-VL
- **Custom Model Support**: Type any vision-capable model name from OpenRouter
- **Optional Revision Loop**: Choose automatic quality-driven analysis refinement (1-5 iterations)
- **Concrete Expert AI**: Specialized concrete technology analysis
- **Petrographic Validation**: Built-in quality assurance by certified specialist
- **Comprehensive Metrics**: Air void analysis, ITZ characterization, hydration assessment
- **Durability Predictions**: Service life and performance implications
- **Mix Design Insights**: Water-cement ratio, aggregate effects, admixture impacts
- **Customizable Prompts**: Edit system prompts for both AI agents
### 🔑 API Requirements:
- **OpenRouter Account**: Sign up at https://openrouter.ai/
- **API Key**: Get your API key from OpenRouter dashboard
- **Model Selection**: Choose from supported vision-capable models
- **Credits**: Ensure sufficient credits for analysis (cost varies by model)
### 📸 Image Requirements:
- Clear, high-quality concrete SEM images for best results
- Consider magnification level appropriate for target analysis
- Supported formats: JPG, PNG, TIFF, BMP
"""
)
return interface
if __name__ == "__main__":
# Create and launch the interface
interface = create_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
) |