Spaces:
Running
Running
File size: 28,702 Bytes
314597a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
# --- START OF FILE computer_control_helper.py ---
from PIL import Image, ImageDraw, ImageFont
import pyautogui
import mss # For screen capture
import json
import os
import time, datetime
def parse_json_safely(json_string: str) -> dict:
"""
Attempts to parse a JSON object (dictionary) from a string,
handling potential errors, markdown fences, and surrounding text.
It looks for the first '{' and the last '}' to extract the potential JSON part.
"""
if not isinstance(json_string, str):
print(f"Warning: Input is not a string, but type {type(json_string)}. Returning empty dict.")
return {}
try:
# --- Stage 1: Basic Cleaning and Markdown Fence Removal ---
# Remove leading/trailing whitespace
clean_string = json_string.strip()
# More robust markdown fence removal
# Check if ```json exists and find content after it
md_json_start = clean_string.find("```json")
if md_json_start != -1:
# Find the start of the actual JSON content after ```json
potential_start = md_json_start + 7 # Length of "```json"
# Handle optional newline after ```json
if potential_start < len(clean_string) and clean_string[potential_start] == '\n':
potential_start += 1
clean_string = clean_string[potential_start:]
# Find the last ``` and take content before it
md_end = clean_string.rfind("```")
if md_end != -1:
clean_string = clean_string[:md_end]
# Strip again after potential fence removal
clean_string = clean_string.strip()
if not clean_string:
# print("Warning: String is empty after cleaning markdown fences.")
# Avoid printing warning if original string wasn't just fences
if json_string.strip() and json_string.strip() != "```json```" and json_string.strip() != "```json\n```":
print("Warning: String is empty after cleaning markdown fences.")
return {}
# --- Stage 2: Find the JSON Object Boundaries ---
first_brace = clean_string.find('{')
last_brace = clean_string.rfind('}')
if first_brace == -1 or last_brace == -1 or last_brace < first_brace:
# print(f"Warning: Could not find valid {{...}} structure in the cleaned string.")
# print(f"Cleaned string: '{clean_string}'")
# Avoid printing warning if the original string clearly wasn't meant to be JSON
if '{' in json_string or '}' in json_string:
print(f"Warning: Could not find valid {{...}} structure in the cleaned string.")
print(f"Cleaned string snippet: '{clean_string[:100]}...{clean_string[-100:]}'") # Show snippet
return {}
# Extract the potential JSON substring
potential_json = clean_string[first_brace : last_brace + 1]
# --- Stage 3: Parse the Extracted Substring ---
parsed = json.loads(potential_json)
# --- Stage 4: Validate the Parsed Structure ---
if isinstance(parsed, dict):
return parsed
# Handle the case where Gemini (or other LLM) might wrap a dict in a list
elif isinstance(parsed, list):
if len(parsed) == 1 and isinstance(parsed[0], dict):
print("Warning: JSON was wrapped in a list, extracting the single dictionary.")
return parsed[0]
else:
# It's a list, but not the specific list-of-one-dict structure we handle
print(f"Warning: Parsed JSON is a list, not a dictionary or list-of-one-dict. Content: {parsed}")
return {} # Return empty dict as the function promises a dict
else:
# Parsed successfully, but it's not a dict or the handled list case
print(f"Warning: Parsed JSON is not a dictionary (type: {type(parsed)}). Content: {parsed}")
return {}
except json.JSONDecodeError as e:
print(f"Error parsing extracted JSON: {e}")
print(f"Extracted substring: '{potential_json}'") # Show the problematic substring
# print(f"Original string: '{json_string}'") # Optionally show original too
return {}
except Exception as e:
# Catch any other unexpected errors during the process
print(f"An unexpected error occurred during JSON extraction or parsing: {e}")
print(f"Original string: '{json_string}'")
return {}
def capture_screen() -> Image.Image | None:
"""Captures the primary monitor's screen and returns it as a PIL Image."""
try:
with mss.mss() as sct:
# Attempt to get the primary monitor; mss behavior can vary.
# monitor[0] is often the 'all monitors' view, monitor[1] the primary.
monitor_index = 1
if len(sct.monitors) <= monitor_index:
print(f"Warning: Monitor index {monitor_index} not found, using monitor 0.")
monitor_index = 0 # Fallback
monitor = sct.monitors[monitor_index]
sct_img = sct.grab(monitor)
img = Image.frombytes("RGB", sct_img.size, sct_img.bgra, "raw", "BGRX")
# Optional: Resize if needed, but higher res is better for Gemini
# img.thumbnail((1920, 1080), Image.Resampling.LANCZOS)
print(f"Screen captured ({img.width}x{img.height})")
return img
except Exception as e:
print(f"Error capturing screen: {e}")
return None
def draw_grid_overlay(img):
"""Draws a grid overlay on the image with 10 horizontal lines and proportional vertical lines."""
try:
# Make a copy of the image to avoid modifying the original
img_copy = img.copy()
draw = ImageDraw.Draw(img_copy)
# Get image dimensions
width, height = img_copy.size
# Try to load a font for coordinate labels - INCREASED SIZE
try:
font = ImageFont.truetype("arial.ttf", 24) # Increased from 14 to 24
except:
font = None
print("Warning: Could not load font for grid labels. Using default.")
# Create 10 horizontal lines with coordinate labels (0-1000)
h_spacing = height // 10
for i in range(1, 10):
y = i * h_spacing
# Draw the horizontal line
draw.line([(0, y), (width, y)], fill=(255, 0, 0), width=2) # Increased line width
# Add coordinate label - normalize to 0-1000 scale
y_norm = int((i / 10) * 1000)
label = f"{y_norm}"
# Draw label background for better visibility
if font:
# Make background larger and more visible
text_bbox = draw.textbbox((10, y-12), label, font=font)
# Expand the bbox slightly
expanded_bbox = (
text_bbox[0] - 5,
text_bbox[1] - 5,
text_bbox[2] + 5,
text_bbox[3] + 5
)
draw.rectangle(expanded_bbox, fill=(255, 255, 255, 220)) # More opaque background
draw.text((10, y-12), label, fill=(255, 0, 0), font=font)
else:
draw.rectangle([(5, y-10), (45, y+10)], fill=(255, 255, 255, 220))
draw.text((5, y-7), label, fill=(255, 0, 0))
# Calculate number of vertical lines to maintain the same ratio
aspect_ratio = width / height
v_lines = int(10 * aspect_ratio)
v_spacing = width // v_lines
# Create vertical lines with coordinate labels (0-1000)
for i in range(1, v_lines):
x = i * v_spacing
# Draw the vertical line
draw.line([(x, 0), (x, height)], fill=(255, 0, 0), width=2) # Increased line width
# Add coordinate label - normalize to 0-1000 scale
x_norm = int((i / v_lines) * 1000)
label = f"{x_norm}"
# Draw label background for better visibility
if font:
# Make background larger and more visible
text_bbox = draw.textbbox((x+5, 10), label, font=font)
# Expand the bbox slightly
expanded_bbox = (
text_bbox[0] - 5,
text_bbox[1] - 5,
text_bbox[2] + 5,
text_bbox[3] + 5
)
draw.rectangle(expanded_bbox, fill=(255, 255, 255, 220)) # More opaque background
draw.text((x+5, 10), label, fill=(255, 0, 0), font=font)
else:
draw.rectangle([(x+2, 5), (x+45, 25)], fill=(255, 255, 255, 220))
draw.text((x+2, 5), label, fill=(255, 0, 0))
return img_copy
except Exception as e:
print(f"Error drawing grid overlay: {e}")
return img # Return original image if there's an error
def perform_click(location_data: dict):
"""Calculates center of bounding box and performs a mouse click."""
if not location_data or "box_2d" not in location_data:
print("No valid location data found to perform click.")
return False
box = location_data.get("box_2d")
label = location_data.get("label", "Unknown Element") # Get label if available
# Validate box format
if not isinstance(box, list) or len(box) != 4:
print(f"Error: Invalid bounding box format received: {box}")
return False
# Get screen dimensions (important for coordinate translation)
try:
screen_width, screen_height = pyautogui.size()
# ADDED: Print detected screen size for verification
print(f"Detected screen dimensions: {screen_width}x{screen_height}")
except Exception as e:
print(f"Error getting screen size: {e}")
return False
# Denormalize coordinates (Gemini uses y_min, x_min, y_max, x_max from 0-1000)
y_min_norm, x_min_norm, y_max_norm, x_max_norm = box
# Enhanced validation of normalized coordinates with detailed error messages
for i, (coord, name) in enumerate(zip(box, ["y_min", "x_min", "y_max", "x_max"])):
if not isinstance(coord, (int, float)):
print(f"Error: {name} coordinate is not a number: {coord}")
return False
if coord < 0 or coord > 1000:
print(f"Error: {name} coordinate out of range [0, 1000]: {coord}")
return False
# Check for zero or negative-area boxes
if x_min_norm >= x_max_norm:
print(f"Error: Invalid x-coordinates (min >= max): {x_min_norm} >= {x_max_norm}")
return False
if y_min_norm >= y_max_norm:
print(f"Error: Invalid y-coordinates (min >= max): {y_min_norm} >= {y_max_norm}")
return False
# Check for extremely small boxes (potential errors)
if x_max_norm - x_min_norm < 5 or y_max_norm - y_min_norm < 5:
print(f"Warning: Very small target area detected ({x_max_norm - x_min_norm}x{y_max_norm - y_min_norm}). This might be inaccurate.")
# Continue but with a warning
# --- Convert to absolute pixel coordinates using round() ---
# Explanation: norm_coord / 1000 gives the ratio (0.0 to 1.0)
# Multiply by screen dimension to get the pixel position.
# round() converts to the nearest integer pixel.
abs_x_min = round(x_min_norm / 1000 * screen_width)
abs_y_min = round(y_min_norm / 1000 * screen_height)
abs_x_max = round(x_max_norm / 1000 * screen_width)
abs_y_max = round(y_max_norm / 1000 * screen_height)
# --- Calculate center point with additional checks ---
# Check for boundary anomalies
if abs_x_max - abs_x_min < 2:
print(f"Warning: X dimension is very small ({abs_x_max - abs_x_min}px), centering might be imprecise")
if abs_y_max - abs_y_min < 2:
print(f"Warning: Y dimension is very small ({abs_y_max - abs_y_min}px), centering might be imprecise")
# Calculate center with floating point precision, then round at the end
center_x = round(abs_x_min + (abs_x_max - abs_x_min) / 2)
center_y = round(abs_y_min + (abs_y_max - abs_y_min) / 2)
print(f"Identified '{label}' at normalized box: [{y_min_norm}, {x_min_norm}, {y_max_norm}, {x_max_norm}]")
print(f"Converted to absolute box: [{abs_y_min}, {abs_x_min}, {abs_y_max}, {abs_x_max}]")
print(f"Calculated click center: ({center_x}, {center_y})")
# --- Enhanced Safety Checks ---
# Add margin from edge of screen (5 pixels)
SCREEN_MARGIN = 5
if center_x < SCREEN_MARGIN or center_x >= screen_width - SCREEN_MARGIN:
print(f"Warning: Click X-coordinate ({center_x}) is very close to screen edge")
# Adjust to safe zone if needed
center_x = max(SCREEN_MARGIN, min(center_x, screen_width - SCREEN_MARGIN - 1))
print(f"Adjusted X-coordinate to: {center_x}")
if center_y < SCREEN_MARGIN or center_y >= screen_height - SCREEN_MARGIN:
print(f"Warning: Click Y-coordinate ({center_y}) is very close to screen edge")
# Adjust to safe zone if needed
center_y = max(SCREEN_MARGIN, min(center_y, screen_height - SCREEN_MARGIN - 1))
print(f"Adjusted Y-coordinate to: {center_y}")
# Extra check for valid range
if not (0 <= center_x < screen_width and 0 <= center_y < screen_height):
print(f"Error: Calculated click coordinates ({center_x}, {center_y}) are outside screen bounds ({screen_width}x{screen_height})!")
# Add more info if possible
print(f"Derived from normalized box: {box}")
return False
# --- Perform Action with improved reliability ---
try:
print(f"Moving mouse to ({center_x}, {center_y}) and clicking '{label}'...")
# First move to a position near the target to avoid potential edge-case issues
current_x, current_y = pyautogui.position()
if abs(current_x - center_x) > 100 or abs(current_y - center_y) > 100:
intermediate_x = current_x + (center_x - current_x) // 2
intermediate_y = current_y + (center_y - current_y) // 2
pyautogui.moveTo(intermediate_x, intermediate_y, duration=0.1)
# Then move to the exact target with slightly slower movement for precision
pyautogui.moveTo(center_x, center_y, duration=0.3)
# Brief pause before clicking
time.sleep(0.1)
# Click
pyautogui.click()
print("Click performed.")
# Verify cursor position after click
after_x, after_y = pyautogui.position()
if abs(after_x - center_x) > 5 or abs(after_y - center_y) > 5:
print(f"Warning: Cursor position after click ({after_x}, {after_y}) differs from target ({center_x}, {center_y})")
return True
except Exception as e:
print(f"Error during mouse action: {e}")
return False
def perform_double_click(location_data: dict):
"""Calculates center of bounding box and performs a mouse double-click."""
if not location_data or "box_2d" not in location_data:
print("No valid location data found to perform double-click.")
return False
box = location_data.get("box_2d")
label = location_data.get("label", "Unknown Element") # Get label if available
# Validate box format
if not isinstance(box, list) or len(box) != 4:
print(f"Error: Invalid bounding box format received: {box}")
return False
# Get screen dimensions (important for coordinate translation)
try:
screen_width, screen_height = pyautogui.size()
# ADDED: Print detected screen size for verification
print(f"Detected screen dimensions: {screen_width}x{screen_height}")
except Exception as e:
print(f"Error getting screen size: {e}")
return False
# Denormalize coordinates (Gemini uses y_min, x_min, y_max, x_max from 0-1000)
y_min_norm, x_min_norm, y_max_norm, x_max_norm = box
# Enhanced validation of normalized coordinates with detailed error messages
for i, (coord, name) in enumerate(zip(box, ["y_min", "x_min", "y_max", "x_max"])):
if not isinstance(coord, (int, float)):
print(f"Error: {name} coordinate is not a number: {coord}")
return False
if coord < 0 or coord > 1000:
print(f"Error: {name} coordinate out of range [0, 1000]: {coord}")
return False
# Check for zero or negative-area boxes
if x_min_norm >= x_max_norm:
print(f"Error: Invalid x-coordinates (min >= max): {x_min_norm} >= {x_max_norm}")
return False
if y_min_norm >= y_max_norm:
print(f"Error: Invalid y-coordinates (min >= max): {y_min_norm} >= {y_max_norm}")
return False
# Check for extremely small boxes (potential errors)
if x_max_norm - x_min_norm < 5 or y_max_norm - y_min_norm < 5:
print(f"Warning: Very small target area detected ({x_max_norm - x_min_norm}x{y_max_norm - y_min_norm}). This might be inaccurate.")
# Continue but with a warning
# Convert to absolute pixel coordinates using round()
abs_x_min = round(x_min_norm / 1000 * screen_width)
abs_y_min = round(y_min_norm / 1000 * screen_height)
abs_x_max = round(x_max_norm / 1000 * screen_width)
abs_y_max = round(y_max_norm / 1000 * screen_height)
# --- Calculate center point with additional checks ---
# Check for boundary anomalies
if abs_x_max - abs_x_min < 2:
print(f"Warning: X dimension is very small ({abs_x_max - abs_x_min}px), centering might be imprecise")
if abs_y_max - abs_y_min < 2:
print(f"Warning: Y dimension is very small ({abs_y_max - abs_y_min}px), centering might be imprecise")
# Calculate center with floating point precision, then round at the end
center_x = round(abs_x_min + (abs_x_max - abs_x_min) / 2)
center_y = round(abs_y_min + (abs_y_max - abs_y_min) / 2)
print(f"Identified '{label}' for double-click at normalized box: [{y_min_norm}, {x_min_norm}, {y_max_norm}, {x_max_norm}]")
print(f"Converted to absolute box: [{abs_y_min}, {abs_x_min}, {abs_y_max}, {abs_x_max}]")
print(f"Calculated double-click center: ({center_x}, {center_y})")
# --- Enhanced Safety Checks ---
# Add margin from edge of screen (5 pixels)
SCREEN_MARGIN = 5
if center_x < SCREEN_MARGIN or center_x >= screen_width - SCREEN_MARGIN:
print(f"Warning: Double-click X-coordinate ({center_x}) is very close to screen edge")
# Adjust to safe zone if needed
center_x = max(SCREEN_MARGIN, min(center_x, screen_width - SCREEN_MARGIN - 1))
print(f"Adjusted X-coordinate to: {center_x}")
if center_y < SCREEN_MARGIN or center_y >= screen_height - SCREEN_MARGIN:
print(f"Warning: Double-click Y-coordinate ({center_y}) is very close to screen edge")
# Adjust to safe zone if needed
center_y = max(SCREEN_MARGIN, min(center_y, screen_height - SCREEN_MARGIN - 1))
print(f"Adjusted Y-coordinate to: {center_y}")
# Extra check for valid range
if not (0 <= center_x < screen_width and 0 <= center_y < screen_height):
print(f"Error: Calculated double-click coordinates ({center_x}, {center_y}) are outside screen bounds ({screen_width}x{screen_height})!")
print(f"Derived from normalized box: {box}")
return False
# --- Perform Action with improved reliability ---
try:
print(f"Moving mouse to ({center_x}, {center_y}) and double-clicking '{label}'...")
# First move to a position near the target to avoid potential edge-case issues
current_x, current_y = pyautogui.position()
if abs(current_x - center_x) > 100 or abs(current_y - center_y) > 100:
intermediate_x = current_x + (center_x - current_x) // 2
intermediate_y = current_y + (center_y - current_y) // 2
pyautogui.moveTo(intermediate_x, intermediate_y, duration=0.1)
# Then move to the exact target with slightly slower movement for precision
pyautogui.moveTo(center_x, center_y, duration=0.3)
# Brief pause before clicking
time.sleep(0.1)
# Double click
pyautogui.doubleClick()
print("Double-click performed.")
# Verify cursor position after click
after_x, after_y = pyautogui.position()
if abs(after_x - center_x) > 5 or abs(after_y - center_y) > 5:
print(f"Warning: Cursor position after double-click ({after_x}, {after_y}) differs from target ({center_x}, {center_y})")
return True
except Exception as e:
print(f"Error during mouse action: {e}")
return False
def perform_type(location_data: dict):
"""Clicks the specified location (if provided) and types the given text."""
if not location_data:
print("No valid location data found for typing.")
return False
text_to_type = location_data.get("text_to_type")
label = location_data.get("label", "Typing Action") # Get label if available
if not text_to_type:
print(f"Error: 'text_to_type' missing in data for typing action: {location_data}")
return False
# --- Step 1: Click the target field (if box_2d is provided) ---
# Reuse perform_click logic to activate the field
if "box_2d" in location_data:
print(f"Clicking field '{label}' before typing...")
click_successful = perform_click(location_data) # Use the existing click function
if not click_successful:
print(f"Failed to click field '{label}' before typing. Aborting type action.")
return False
time.sleep(0.2) # Small delay after click before typing
else:
print("Warning: No 'box_2d' provided for 'type' action. Typing at current cursor position.")
# Consider if this is desired behavior or should be an error
# --- Step 2: Perform Typing ---
try:
print(f"Typing text into '{label}': '{text_to_type}'")
# Add a small interval between key presses for reliability, especially in slower apps
pyautogui.write(text_to_type, interval=0.05)
print("Typing performed.")
return True
except Exception as e:
print(f"Error during typing action: {e}")
return False
def perform_press_key(location_data: dict):
"""
Presses a specific keyboard key or performs a keyboard shortcut.
Handles single keys (e.g., 'enter', 'a', 'f5') using pyautogui.press()
and shortcuts (e.g., 'ctrl+c', 'alt+tab', 'ctrl+alt+delete') using
pyautogui.hotkey(). Shortcuts are identified by the presence of '+'
in the 'key_to_press' string.
Args:
location_data: A dictionary containing action details. Expected keys:
- 'key_to_press' (str): The key or shortcut string (e.g., 'enter', 'ctrl+c').
- 'label' (str, optional): A descriptive label for the action.
Returns:
bool: True if the action was performed successfully, False otherwise.
Raises:
Potentially any exception from pyautogui if the key/shortcut string is
malformed or contains names pyautogui does not recognize.
"""
if not location_data:
print("No valid location data found for key press/shortcut.")
return False
key_action_string = location_data.get("key_to_press")
# Use the provided label or create a default one based on the action string
label = location_data.get("label", f"Key Action '{key_action_string}'")
if not key_action_string:
print(f"Error: 'key_to_press' missing in data for key action: {location_data}")
return False
# Standardize to lowercase for execution consistency
key_action_string_lower = key_action_string.lower()
is_shortcut = '+' in key_action_string_lower
# --- Perform Key Press or Shortcut ---
try:
if is_shortcut:
# Prepare the list of keys for hotkey
action_keys = [key.strip() for key in key_action_string_lower.split('+')]
# Basic validation for empty components after split
if not action_keys or any(not k for k in action_keys):
print(f"Error: Invalid shortcut format '{key_action_string}'. Check for extra '+' or empty parts.")
return False
print(f"Performing shortcut: '{key_action_string}' (Action label: '{label}')")
pyautogui.hotkey(*action_keys) # Unpack the list into arguments
print("Shortcut performed.")
else:
# Single key press
# Basic validation for empty key string
if not key_action_string_lower.strip():
print(f"Error: 'key_to_press' is empty or whitespace only.")
return False
print(f"Pressing key: '{key_action_string}' (Action label: '{label}')")
pyautogui.press(key_action_string_lower)
print("Key press performed.")
# Optional: Add a small delay after the action
# time.sleep(0.1)
return True
except Exception as e:
# Catch potential errors from pyautogui (e.g., invalid key names)
# PyAutoGUI might raise various errors, including KeyError or platform-specific ones
print(f"Error during key action '{key_action_string}': {e}")
# You might want to inspect the type of exception 'e' for more specific handling
return False
max_steps = 100 # Safety break to prevent infinite loops
def do_task(original_task, task_not_complted):
print("IN do_task()")
step_count = 0
try:
while not task_not_complted and step_count < max_steps:
step_count += 1
print(f"\n--- Step {step_count} for Task: '{original_task}' ---")
# 1. Capture Screen
print("Capturing screen...")
screen_image = capture_screen()
# Parse the json input
step_info = parse_json_safely(original_task)
# 3. Extract info from Gemini's response
action_type = step_info.get("action_type") # Get the action type
task_not_completed = step_info.get("task_not_completed", False) # Default to False if missing
label = step_info.get("label", "Unknown Action/Element") # Get label
print(f"Gemini identified action: '{action_type}', Target/Label: '{label}'. Task completed this step: {not task_not_completed}")
# 4. Perform Action based on type - only support click and double_click
action_successful = False # Initialize before action attempt
if action_type == "click":
action_successful = perform_click(step_info)
elif action_type == "double_click":
action_successful = perform_double_click(step_info)
elif action_type not in ["click", "double_click"]:
# Handle invalid or unsupported action types (keyboard actions should go to function model)
print(f"Error: Action type '{action_type}' is not supported. Only 'click' and 'double_click' are allowed. Keyboard actions should be handled by the function calling model.")
action_successful = False
else:
# This case handles missing action_type
print(f"Error: Unknown or missing 'action_type' ('{action_type}') received.")
action_successful = False
# 5. Check if action failed and abort if necessary
if not action_successful:
print(f"Failed to perform action '{action_type}' on '{label}'. Aborting task.")
break # Exit the loop on failure
# 6. Check if task is finished based on Gemini's flag
if not task_not_completed:
print(f"Task '{original_task}' reported as complete after action '{action_type}'.")
break # Exit the loop, task is done
return "STEP COMPLETED. CHECK BY YOURSELF IF IT HAS ACTUALLY BEEN DONE OR NOT. DO NOT ASK THE USER - JUST VIEW THE RECORDING."
except Exception as e:
print(f"\n--- An unexpected error occurred in the main loop ---")
print(f"Error: {e}")
import traceback
traceback.print_exc() # Print detailed traceback for debugging
print("-------------------------------------------------------") |