File size: 28,702 Bytes
314597a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
# --- START OF FILE computer_control_helper.py ---

from PIL import Image, ImageDraw, ImageFont
import pyautogui
import mss # For screen capture
import json
import os
import time, datetime

def parse_json_safely(json_string: str) -> dict:
    """
    Attempts to parse a JSON object (dictionary) from a string,
    handling potential errors, markdown fences, and surrounding text.

    It looks for the first '{' and the last '}' to extract the potential JSON part.
    """
    if not isinstance(json_string, str):
        print(f"Warning: Input is not a string, but type {type(json_string)}. Returning empty dict.")
        return {}

    try:
        # --- Stage 1: Basic Cleaning and Markdown Fence Removal ---
        # Remove leading/trailing whitespace
        clean_string = json_string.strip()

        # More robust markdown fence removal
        # Check if ```json exists and find content after it
        md_json_start = clean_string.find("```json")
        if md_json_start != -1:
            # Find the start of the actual JSON content after ```json
            potential_start = md_json_start + 7 # Length of "```json"
            # Handle optional newline after ```json
            if potential_start < len(clean_string) and clean_string[potential_start] == '\n':
                 potential_start += 1
            clean_string = clean_string[potential_start:]

        # Find the last ``` and take content before it
        md_end = clean_string.rfind("```")
        if md_end != -1:
            clean_string = clean_string[:md_end]

        # Strip again after potential fence removal
        clean_string = clean_string.strip()

        if not clean_string:
            # print("Warning: String is empty after cleaning markdown fences.")
            # Avoid printing warning if original string wasn't just fences
            if json_string.strip() and json_string.strip() != "```json```" and json_string.strip() != "```json\n```":
                 print("Warning: String is empty after cleaning markdown fences.")
            return {}

        # --- Stage 2: Find the JSON Object Boundaries ---
        first_brace = clean_string.find('{')
        last_brace = clean_string.rfind('}')

        if first_brace == -1 or last_brace == -1 or last_brace < first_brace:
            # print(f"Warning: Could not find valid {{...}} structure in the cleaned string.")
            # print(f"Cleaned string: '{clean_string}'")
             # Avoid printing warning if the original string clearly wasn't meant to be JSON
            if '{' in json_string or '}' in json_string:
                print(f"Warning: Could not find valid {{...}} structure in the cleaned string.")
                print(f"Cleaned string snippet: '{clean_string[:100]}...{clean_string[-100:]}'") # Show snippet
            return {}

        # Extract the potential JSON substring
        potential_json = clean_string[first_brace : last_brace + 1]

        # --- Stage 3: Parse the Extracted Substring ---
        parsed = json.loads(potential_json)

        # --- Stage 4: Validate the Parsed Structure ---
        if isinstance(parsed, dict):
            return parsed
        # Handle the case where Gemini (or other LLM) might wrap a dict in a list
        elif isinstance(parsed, list):
            if len(parsed) == 1 and isinstance(parsed[0], dict):
                print("Warning: JSON was wrapped in a list, extracting the single dictionary.")
                return parsed[0]
            else:
                # It's a list, but not the specific list-of-one-dict structure we handle
                print(f"Warning: Parsed JSON is a list, not a dictionary or list-of-one-dict. Content: {parsed}")
                return {} # Return empty dict as the function promises a dict
        else:
            # Parsed successfully, but it's not a dict or the handled list case
            print(f"Warning: Parsed JSON is not a dictionary (type: {type(parsed)}). Content: {parsed}")
            return {}

    except json.JSONDecodeError as e:
        print(f"Error parsing extracted JSON: {e}")
        print(f"Extracted substring: '{potential_json}'") # Show the problematic substring
        # print(f"Original string: '{json_string}'") # Optionally show original too
        return {}
    except Exception as e:
        # Catch any other unexpected errors during the process
        print(f"An unexpected error occurred during JSON extraction or parsing: {e}")
        print(f"Original string: '{json_string}'")
        return {}

def capture_screen() -> Image.Image | None:
    """Captures the primary monitor's screen and returns it as a PIL Image."""
    try:
        with mss.mss() as sct:
            # Attempt to get the primary monitor; mss behavior can vary.
            # monitor[0] is often the 'all monitors' view, monitor[1] the primary.
            monitor_index = 1
            if len(sct.monitors) <= monitor_index:
                print(f"Warning: Monitor index {monitor_index} not found, using monitor 0.")
                monitor_index = 0 # Fallback

            monitor = sct.monitors[monitor_index]
            sct_img = sct.grab(monitor)
            img = Image.frombytes("RGB", sct_img.size, sct_img.bgra, "raw", "BGRX")
            # Optional: Resize if needed, but higher res is better for Gemini
            # img.thumbnail((1920, 1080), Image.Resampling.LANCZOS)
            print(f"Screen captured ({img.width}x{img.height})")
            return img
    except Exception as e:
        print(f"Error capturing screen: {e}")
        return None

def draw_grid_overlay(img):
    """Draws a grid overlay on the image with 10 horizontal lines and proportional vertical lines."""
    try:
        # Make a copy of the image to avoid modifying the original
        img_copy = img.copy()
        draw = ImageDraw.Draw(img_copy)
        
        # Get image dimensions
        width, height = img_copy.size
        
        # Try to load a font for coordinate labels - INCREASED SIZE
        try:
            font = ImageFont.truetype("arial.ttf", 24)  # Increased from 14 to 24
        except:
            font = None
            print("Warning: Could not load font for grid labels. Using default.")
        
        # Create 10 horizontal lines with coordinate labels (0-1000)
        h_spacing = height // 10
        for i in range(1, 10):
            y = i * h_spacing
            # Draw the horizontal line
            draw.line([(0, y), (width, y)], fill=(255, 0, 0), width=2)  # Increased line width
            
            # Add coordinate label - normalize to 0-1000 scale
            y_norm = int((i / 10) * 1000)
            label = f"{y_norm}"
            # Draw label background for better visibility
            if font:
                # Make background larger and more visible
                text_bbox = draw.textbbox((10, y-12), label, font=font)
                # Expand the bbox slightly
                expanded_bbox = (
                    text_bbox[0] - 5,
                    text_bbox[1] - 5,
                    text_bbox[2] + 5,
                    text_bbox[3] + 5
                )
                draw.rectangle(expanded_bbox, fill=(255, 255, 255, 220))  # More opaque background
                draw.text((10, y-12), label, fill=(255, 0, 0), font=font)
            else:
                draw.rectangle([(5, y-10), (45, y+10)], fill=(255, 255, 255, 220))
                draw.text((5, y-7), label, fill=(255, 0, 0))
        
        # Calculate number of vertical lines to maintain the same ratio
        aspect_ratio = width / height
        v_lines = int(10 * aspect_ratio)
        v_spacing = width // v_lines
        
        # Create vertical lines with coordinate labels (0-1000)
        for i in range(1, v_lines):
            x = i * v_spacing
            # Draw the vertical line
            draw.line([(x, 0), (x, height)], fill=(255, 0, 0), width=2)  # Increased line width
            
            # Add coordinate label - normalize to 0-1000 scale
            x_norm = int((i / v_lines) * 1000)
            label = f"{x_norm}"
            # Draw label background for better visibility
            if font:
                # Make background larger and more visible
                text_bbox = draw.textbbox((x+5, 10), label, font=font)
                # Expand the bbox slightly
                expanded_bbox = (
                    text_bbox[0] - 5,
                    text_bbox[1] - 5,
                    text_bbox[2] + 5,
                    text_bbox[3] + 5
                )
                draw.rectangle(expanded_bbox, fill=(255, 255, 255, 220))  # More opaque background
                draw.text((x+5, 10), label, fill=(255, 0, 0), font=font)
            else:
                draw.rectangle([(x+2, 5), (x+45, 25)], fill=(255, 255, 255, 220))
                draw.text((x+2, 5), label, fill=(255, 0, 0))
        
        return img_copy
    except Exception as e:
        print(f"Error drawing grid overlay: {e}")
        return img  # Return original image if there's an error

def perform_click(location_data: dict):
    """Calculates center of bounding box and performs a mouse click."""
    if not location_data or "box_2d" not in location_data:
        print("No valid location data found to perform click.")
        return False

    box = location_data.get("box_2d")
    label = location_data.get("label", "Unknown Element") # Get label if available

    # Validate box format
    if not isinstance(box, list) or len(box) != 4:
        print(f"Error: Invalid bounding box format received: {box}")
        return False

    # Get screen dimensions (important for coordinate translation)
    try:
        screen_width, screen_height = pyautogui.size()
        # ADDED: Print detected screen size for verification
        print(f"Detected screen dimensions: {screen_width}x{screen_height}")
    except Exception as e:
        print(f"Error getting screen size: {e}")
        return False

    # Denormalize coordinates (Gemini uses y_min, x_min, y_max, x_max from 0-1000)
    y_min_norm, x_min_norm, y_max_norm, x_max_norm = box

    # Enhanced validation of normalized coordinates with detailed error messages
    for i, (coord, name) in enumerate(zip(box, ["y_min", "x_min", "y_max", "x_max"])):
        if not isinstance(coord, (int, float)):
            print(f"Error: {name} coordinate is not a number: {coord}")
            return False
        if coord < 0 or coord > 1000:
            print(f"Error: {name} coordinate out of range [0, 1000]: {coord}")
            return False

    # Check for zero or negative-area boxes
    if x_min_norm >= x_max_norm:
        print(f"Error: Invalid x-coordinates (min >= max): {x_min_norm} >= {x_max_norm}")
        return False
    if y_min_norm >= y_max_norm:
        print(f"Error: Invalid y-coordinates (min >= max): {y_min_norm} >= {y_max_norm}")
        return False

    # Check for extremely small boxes (potential errors)
    if x_max_norm - x_min_norm < 5 or y_max_norm - y_min_norm < 5:
        print(f"Warning: Very small target area detected ({x_max_norm - x_min_norm}x{y_max_norm - y_min_norm}). This might be inaccurate.")
        # Continue but with a warning

    # --- Convert to absolute pixel coordinates using round() ---
    # Explanation: norm_coord / 1000 gives the ratio (0.0 to 1.0)
    # Multiply by screen dimension to get the pixel position.
    # round() converts to the nearest integer pixel.
    abs_x_min = round(x_min_norm / 1000 * screen_width)
    abs_y_min = round(y_min_norm / 1000 * screen_height)
    abs_x_max = round(x_max_norm / 1000 * screen_width)
    abs_y_max = round(y_max_norm / 1000 * screen_height)

    # --- Calculate center point with additional checks ---
    # Check for boundary anomalies
    if abs_x_max - abs_x_min < 2:
        print(f"Warning: X dimension is very small ({abs_x_max - abs_x_min}px), centering might be imprecise")
    if abs_y_max - abs_y_min < 2:
        print(f"Warning: Y dimension is very small ({abs_y_max - abs_y_min}px), centering might be imprecise")

    # Calculate center with floating point precision, then round at the end
    center_x = round(abs_x_min + (abs_x_max - abs_x_min) / 2)
    center_y = round(abs_y_min + (abs_y_max - abs_y_min) / 2)

    print(f"Identified '{label}' at normalized box: [{y_min_norm}, {x_min_norm}, {y_max_norm}, {x_max_norm}]")
    print(f"Converted to absolute box: [{abs_y_min}, {abs_x_min}, {abs_y_max}, {abs_x_max}]")
    print(f"Calculated click center: ({center_x}, {center_y})")

    # --- Enhanced Safety Checks ---
    # Add margin from edge of screen (5 pixels)
    SCREEN_MARGIN = 5
    if center_x < SCREEN_MARGIN or center_x >= screen_width - SCREEN_MARGIN:
        print(f"Warning: Click X-coordinate ({center_x}) is very close to screen edge")
        # Adjust to safe zone if needed
        center_x = max(SCREEN_MARGIN, min(center_x, screen_width - SCREEN_MARGIN - 1))
        print(f"Adjusted X-coordinate to: {center_x}")
    
    if center_y < SCREEN_MARGIN or center_y >= screen_height - SCREEN_MARGIN:
        print(f"Warning: Click Y-coordinate ({center_y}) is very close to screen edge")
        # Adjust to safe zone if needed
        center_y = max(SCREEN_MARGIN, min(center_y, screen_height - SCREEN_MARGIN - 1))
        print(f"Adjusted Y-coordinate to: {center_y}")

    # Extra check for valid range
    if not (0 <= center_x < screen_width and 0 <= center_y < screen_height):
        print(f"Error: Calculated click coordinates ({center_x}, {center_y}) are outside screen bounds ({screen_width}x{screen_height})!")
        # Add more info if possible
        print(f"Derived from normalized box: {box}")
        return False

    # --- Perform Action with improved reliability ---
    try:
        print(f"Moving mouse to ({center_x}, {center_y}) and clicking '{label}'...")
        
        # First move to a position near the target to avoid potential edge-case issues
        current_x, current_y = pyautogui.position()
        if abs(current_x - center_x) > 100 or abs(current_y - center_y) > 100:
            intermediate_x = current_x + (center_x - current_x) // 2
            intermediate_y = current_y + (center_y - current_y) // 2
            pyautogui.moveTo(intermediate_x, intermediate_y, duration=0.1)
        
        # Then move to the exact target with slightly slower movement for precision
        pyautogui.moveTo(center_x, center_y, duration=0.3)
        
        # Brief pause before clicking
        time.sleep(0.1)
        
        # Click
        pyautogui.click()
        print("Click performed.")
        
        # Verify cursor position after click
        after_x, after_y = pyautogui.position()
        if abs(after_x - center_x) > 5 or abs(after_y - center_y) > 5:
            print(f"Warning: Cursor position after click ({after_x}, {after_y}) differs from target ({center_x}, {center_y})")
        
        return True
    except Exception as e:
        print(f"Error during mouse action: {e}")
        return False

def perform_double_click(location_data: dict):
    """Calculates center of bounding box and performs a mouse double-click."""
    if not location_data or "box_2d" not in location_data:
        print("No valid location data found to perform double-click.")
        return False

    box = location_data.get("box_2d")
    label = location_data.get("label", "Unknown Element") # Get label if available

    # Validate box format
    if not isinstance(box, list) or len(box) != 4:
        print(f"Error: Invalid bounding box format received: {box}")
        return False

    # Get screen dimensions (important for coordinate translation)
    try:
        screen_width, screen_height = pyautogui.size()
        # ADDED: Print detected screen size for verification
        print(f"Detected screen dimensions: {screen_width}x{screen_height}")
    except Exception as e:
        print(f"Error getting screen size: {e}")
        return False

    # Denormalize coordinates (Gemini uses y_min, x_min, y_max, x_max from 0-1000)
    y_min_norm, x_min_norm, y_max_norm, x_max_norm = box

    # Enhanced validation of normalized coordinates with detailed error messages
    for i, (coord, name) in enumerate(zip(box, ["y_min", "x_min", "y_max", "x_max"])):
        if not isinstance(coord, (int, float)):
            print(f"Error: {name} coordinate is not a number: {coord}")
            return False
        if coord < 0 or coord > 1000:
            print(f"Error: {name} coordinate out of range [0, 1000]: {coord}")
            return False

    # Check for zero or negative-area boxes
    if x_min_norm >= x_max_norm:
        print(f"Error: Invalid x-coordinates (min >= max): {x_min_norm} >= {x_max_norm}")
        return False
    if y_min_norm >= y_max_norm:
        print(f"Error: Invalid y-coordinates (min >= max): {y_min_norm} >= {y_max_norm}")
        return False

    # Check for extremely small boxes (potential errors)
    if x_max_norm - x_min_norm < 5 or y_max_norm - y_min_norm < 5:
        print(f"Warning: Very small target area detected ({x_max_norm - x_min_norm}x{y_max_norm - y_min_norm}). This might be inaccurate.")
        # Continue but with a warning

    # Convert to absolute pixel coordinates using round()
    abs_x_min = round(x_min_norm / 1000 * screen_width)
    abs_y_min = round(y_min_norm / 1000 * screen_height)
    abs_x_max = round(x_max_norm / 1000 * screen_width)
    abs_y_max = round(y_max_norm / 1000 * screen_height)

    # --- Calculate center point with additional checks ---
    # Check for boundary anomalies
    if abs_x_max - abs_x_min < 2:
        print(f"Warning: X dimension is very small ({abs_x_max - abs_x_min}px), centering might be imprecise")
    if abs_y_max - abs_y_min < 2:
        print(f"Warning: Y dimension is very small ({abs_y_max - abs_y_min}px), centering might be imprecise")

    # Calculate center with floating point precision, then round at the end
    center_x = round(abs_x_min + (abs_x_max - abs_x_min) / 2)
    center_y = round(abs_y_min + (abs_y_max - abs_y_min) / 2)

    print(f"Identified '{label}' for double-click at normalized box: [{y_min_norm}, {x_min_norm}, {y_max_norm}, {x_max_norm}]")
    print(f"Converted to absolute box: [{abs_y_min}, {abs_x_min}, {abs_y_max}, {abs_x_max}]")
    print(f"Calculated double-click center: ({center_x}, {center_y})")

    # --- Enhanced Safety Checks ---
    # Add margin from edge of screen (5 pixels)
    SCREEN_MARGIN = 5
    if center_x < SCREEN_MARGIN or center_x >= screen_width - SCREEN_MARGIN:
        print(f"Warning: Double-click X-coordinate ({center_x}) is very close to screen edge")
        # Adjust to safe zone if needed
        center_x = max(SCREEN_MARGIN, min(center_x, screen_width - SCREEN_MARGIN - 1))
        print(f"Adjusted X-coordinate to: {center_x}")
    
    if center_y < SCREEN_MARGIN or center_y >= screen_height - SCREEN_MARGIN:
        print(f"Warning: Double-click Y-coordinate ({center_y}) is very close to screen edge")
        # Adjust to safe zone if needed
        center_y = max(SCREEN_MARGIN, min(center_y, screen_height - SCREEN_MARGIN - 1))
        print(f"Adjusted Y-coordinate to: {center_y}")

    # Extra check for valid range
    if not (0 <= center_x < screen_width and 0 <= center_y < screen_height):
        print(f"Error: Calculated double-click coordinates ({center_x}, {center_y}) are outside screen bounds ({screen_width}x{screen_height})!")
        print(f"Derived from normalized box: {box}")
        return False

    # --- Perform Action with improved reliability ---
    try:
        print(f"Moving mouse to ({center_x}, {center_y}) and double-clicking '{label}'...")
        
        # First move to a position near the target to avoid potential edge-case issues
        current_x, current_y = pyautogui.position()
        if abs(current_x - center_x) > 100 or abs(current_y - center_y) > 100:
            intermediate_x = current_x + (center_x - current_x) // 2
            intermediate_y = current_y + (center_y - current_y) // 2
            pyautogui.moveTo(intermediate_x, intermediate_y, duration=0.1)
        
        # Then move to the exact target with slightly slower movement for precision
        pyautogui.moveTo(center_x, center_y, duration=0.3)
        
        # Brief pause before clicking
        time.sleep(0.1)
        
        # Double click
        pyautogui.doubleClick()
        print("Double-click performed.")
        
        # Verify cursor position after click
        after_x, after_y = pyautogui.position()
        if abs(after_x - center_x) > 5 or abs(after_y - center_y) > 5:
            print(f"Warning: Cursor position after double-click ({after_x}, {after_y}) differs from target ({center_x}, {center_y})")
        
        return True
    except Exception as e:
        print(f"Error during mouse action: {e}")
        return False

def perform_type(location_data: dict):
    """Clicks the specified location (if provided) and types the given text."""
    if not location_data:
        print("No valid location data found for typing.")
        return False

    text_to_type = location_data.get("text_to_type")
    label = location_data.get("label", "Typing Action") # Get label if available

    if not text_to_type:
        print(f"Error: 'text_to_type' missing in data for typing action: {location_data}")
        return False

    # --- Step 1: Click the target field (if box_2d is provided) ---
    # Reuse perform_click logic to activate the field
    if "box_2d" in location_data:
        print(f"Clicking field '{label}' before typing...")
        click_successful = perform_click(location_data) # Use the existing click function
        if not click_successful:
            print(f"Failed to click field '{label}' before typing. Aborting type action.")
            return False
        time.sleep(0.2) # Small delay after click before typing
    else:
        print("Warning: No 'box_2d' provided for 'type' action. Typing at current cursor position.")
        # Consider if this is desired behavior or should be an error

    # --- Step 2: Perform Typing ---
    try:
        print(f"Typing text into '{label}': '{text_to_type}'")
        # Add a small interval between key presses for reliability, especially in slower apps
        pyautogui.write(text_to_type, interval=0.05)
        print("Typing performed.")
        return True
    except Exception as e:
        print(f"Error during typing action: {e}")
        return False

def perform_press_key(location_data: dict):
    """
    Presses a specific keyboard key or performs a keyboard shortcut.

    Handles single keys (e.g., 'enter', 'a', 'f5') using pyautogui.press()
    and shortcuts (e.g., 'ctrl+c', 'alt+tab', 'ctrl+alt+delete') using
    pyautogui.hotkey(). Shortcuts are identified by the presence of '+'
    in the 'key_to_press' string.

    Args:
        location_data: A dictionary containing action details. Expected keys:
            - 'key_to_press' (str): The key or shortcut string (e.g., 'enter', 'ctrl+c').
            - 'label' (str, optional): A descriptive label for the action.

    Returns:
        bool: True if the action was performed successfully, False otherwise.

    Raises:
        Potentially any exception from pyautogui if the key/shortcut string is
        malformed or contains names pyautogui does not recognize.
    """
    if not location_data:
        print("No valid location data found for key press/shortcut.")
        return False

    key_action_string = location_data.get("key_to_press")
    # Use the provided label or create a default one based on the action string
    label = location_data.get("label", f"Key Action '{key_action_string}'")

    if not key_action_string:
        print(f"Error: 'key_to_press' missing in data for key action: {location_data}")
        return False

    # Standardize to lowercase for execution consistency
    key_action_string_lower = key_action_string.lower()

    is_shortcut = '+' in key_action_string_lower

    # --- Perform Key Press or Shortcut ---
    try:
        if is_shortcut:
            # Prepare the list of keys for hotkey
            action_keys = [key.strip() for key in key_action_string_lower.split('+')]
            # Basic validation for empty components after split
            if not action_keys or any(not k for k in action_keys):
                 print(f"Error: Invalid shortcut format '{key_action_string}'. Check for extra '+' or empty parts.")
                 return False

            print(f"Performing shortcut: '{key_action_string}' (Action label: '{label}')")
            pyautogui.hotkey(*action_keys) # Unpack the list into arguments
            print("Shortcut performed.")
        else:
            # Single key press
            # Basic validation for empty key string
            if not key_action_string_lower.strip():
                print(f"Error: 'key_to_press' is empty or whitespace only.")
                return False

            print(f"Pressing key: '{key_action_string}' (Action label: '{label}')")
            pyautogui.press(key_action_string_lower)
            print("Key press performed.")

        # Optional: Add a small delay after the action
        # time.sleep(0.1)

        return True

    except Exception as e:
        # Catch potential errors from pyautogui (e.g., invalid key names)
        # PyAutoGUI might raise various errors, including KeyError or platform-specific ones
        print(f"Error during key action '{key_action_string}': {e}")
        # You might want to inspect the type of exception 'e' for more specific handling
        return False


max_steps = 100 # Safety break to prevent infinite loops


def do_task(original_task, task_not_complted):
    print("IN do_task()")
    step_count = 0
    try:
        while not task_not_complted and step_count < max_steps:
                step_count += 1
                print(f"\n--- Step {step_count} for Task: '{original_task}' ---")

                # 1. Capture Screen
                print("Capturing screen...")
                screen_image = capture_screen()

                # Parse the json input
                step_info = parse_json_safely(original_task)

                # 3. Extract info from Gemini's response
                action_type = step_info.get("action_type") # Get the action type
                task_not_completed = step_info.get("task_not_completed", False) # Default to False if missing
                label = step_info.get("label", "Unknown Action/Element") # Get label

                print(f"Gemini identified action: '{action_type}', Target/Label: '{label}'. Task completed this step: {not task_not_completed}")

                # 4. Perform Action based on type - only support click and double_click
                action_successful = False # Initialize before action attempt

                if action_type == "click":
                    action_successful = perform_click(step_info)
                elif action_type == "double_click":
                    action_successful = perform_double_click(step_info)
                elif action_type not in ["click", "double_click"]:
                    # Handle invalid or unsupported action types (keyboard actions should go to function model)
                    print(f"Error: Action type '{action_type}' is not supported. Only 'click' and 'double_click' are allowed. Keyboard actions should be handled by the function calling model.")
                    action_successful = False
                else:
                    # This case handles missing action_type
                    print(f"Error: Unknown or missing 'action_type' ('{action_type}') received.")
                    action_successful = False

                # 5. Check if action failed and abort if necessary
                if not action_successful:
                    print(f"Failed to perform action '{action_type}' on '{label}'. Aborting task.")
                    break  # Exit the loop on failure

                # 6. Check if task is finished based on Gemini's flag
                if not task_not_completed:
                    print(f"Task '{original_task}' reported as complete after action '{action_type}'.")
                    break  # Exit the loop, task is done

                return "STEP COMPLETED. CHECK BY YOURSELF IF IT HAS ACTUALLY BEEN DONE OR NOT. DO NOT ASK THE USER - JUST VIEW THE RECORDING."
 

    except Exception as e:
            print(f"\n--- An unexpected error occurred in the main loop ---")
            print(f"Error: {e}")
            import traceback
            traceback.print_exc() # Print detailed traceback for debugging
            print("-------------------------------------------------------")