rag-llama-4 / app.py
SlouchyBuffalo's picture
Create app.py
91cb78a verified
raw
history blame
5.7 kB
import gradio as gr
import spaces
import os
import logging
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from huggingface_hub import InferenceClient, get_token
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set HF_HOME for caching Hugging Face assets in persistent storage
os.environ["HF_HOME"] = "/data/.huggingface"
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
# Define persistent storage directories
DATA_DIR = "/data" # Root persistent storage directory
DOCS_DIR = os.path.join(DATA_DIR, "documents") # Subdirectory for uploaded PDFs
CHROMA_DIR = os.path.join(DATA_DIR, "chroma_db") # Subdirectory for Chroma vector store
# Create directories if they don't exist
os.makedirs(DOCS_DIR, exist_ok=True)
os.makedirs(CHROMA_DIR, exist_ok=True)
# Initialize Cerebras InferenceClient
try:
client = InferenceClient(
model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
provider="cerebras",
token=get_token() # PRO account token with $2 monthly credits
)
except Exception as e:
logger.error(f"Failed to initialize InferenceClient: {str(e)}")
client = None
# Global variables for vector store
vectorstore = None
retriever = None
@spaces.GPU(duration=120) # Use ZeroGPU (H200) for embedding generation, 120s timeout
def initialize_rag(file):
global vectorstore, retriever
try:
# Save uploaded file to persistent storage
file_name = os.path.basename(file.name)
file_path = os.path.join(DOCS_DIR, file_name)
if os.path.exists(file_path):
logger.info(f"File {file_name} already exists in {DOCS_DIR}, skipping save.")
else:
with open(file_path, "wb") as f:
f.write(file.read())
logger.info(f"Saved {file_name} to {file_path}")
# Load and split document
loader = PyPDFLoader(file_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
# Create or update embeddings and vector store
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectorstore = Chroma.from_documents(
texts, embeddings, persist_directory=CHROMA_DIR
)
vectorstore.persist() # Save to persistent storage
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
return f"Document '{file_name}' processed and saved to {DOCS_DIR}!"
except Exception as e:
logger.error(f"Error processing document: {str(e)}")
return f"Error processing document: {str(e)}"
def query_documents(query, history, system_prompt, max_tokens, temperature):
global retriever, client
try:
if client is None:
return history, "Error: InferenceClient not initialized."
if retriever is None:
return history, "Error: No documents loaded. Please upload a document first."
# Retrieve relevant documents
docs = retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in docs])
# Call Cerebras inference
response = client.chat_completion(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Context: {context}\n\nQuery: {query}"}
],
max_tokens=int(max_tokens),
temperature=float(temperature),
stream=False
)
answer = response.choices[0].message.content
# Update chat history
history.append((query, answer))
return history, history
except Exception as e:
logger.error(f"Error querying documents: {str(e)}")
return history, f"Error querying documents: {str(e)}"
# Load existing vector store on startup
try:
if os.path.exists(CHROMA_DIR):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectorstore = Chroma(persist_directory=CHROMA_DIR, embedding_function=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
logger.info(f"Loaded existing vector store from {CHROMA_DIR}")
except Exception as e:
logger.error(f"Error loading vector store: {str(e)}")
with gr.Blocks() as demo:
gr.Markdown("# RAG Chatbot with Persistent Storage and Cerebras Inference")
# File upload
file_input = gr.File(label="Upload Document (PDF)", file_types=[".pdf"])
file_output = gr.Textbox(label="Upload Status")
file_input.upload(initialize_rag, file_input, file_output)
# Chat interface
chatbot = gr.Chatbot(label="Conversation")
# Query and parameters
with gr.Row():
query_input = gr.Textbox(label="Query", placeholder="Ask about the document...")
system_prompt = gr.Textbox(
label="System Prompt",
value="You are a helpful assistant answering questions based on the provided document context."
)
max_tokens = gr.Slider(label="Max Tokens", minimum=50, maximum=2000, value=500, step=50)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1)
# Submit button
submit_btn = gr.Button("Send")
submit_btn.click(
query_documents,
inputs=[query_input, chatbot, system_prompt, max_tokens, temperature],
outputs=[chatbot, chatbot]
)
if __name__ == "__main__":
demo.launch()