Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,681 Bytes
393e4f2 3b6bffb 393e4f2 38374bc 393e4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# app.py - Corrected CloudConvert API Integration
import gradio as gr
import os
import spaces
import tempfile
import requests
import time
from huggingface_hub import InferenceClient
from pathlib import Path
# Debug tokens
hf_token = os.getenv("HF_TOKEN")
cloudconvert_token = os.getenv("CLOUDCONVERT_API_KEY").strip() if os.getenv("CLOUDCONVERT_API_KEY") else None
print(f"Debug: HF Token exists = {hf_token is not None}")
print(f"Debug: CloudConvert Token exists = {cloudconvert_token is not None}")
# Initialize the client with Cerebras
client = InferenceClient(
"meta-llama/Llama-3.3-70B-Instruct",
provider="cerebras",
token=hf_token
)
def convert_pages_to_text(file_path, api_key):
"""Convert .pages file to text using CloudConvert API - Correct Format"""
base_url = "https://api.cloudconvert.com/v2"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
# Step 1: Create a job with correct task structure
job_data = {
"tasks": {
"import-file": {
"operation": "import/upload"
},
"convert-file": {
"operation": "convert",
"input": "import-file",
"input_format": "pages",
"output_format": "txt"
},
"export-file": {
"operation": "export/url",
"input": "convert-file"
}
}
}
print("Creating CloudConvert job...")
response = requests.post(f"{base_url}/jobs", headers=headers, json=job_data)
print(f"Job creation response: {response.status_code}")
if not response.ok:
print(f"Job creation failed: {response.text}")
response.raise_for_status()
job = response.json()
print(f"Job created successfully: {job['data']['id']}")
# Step 2: Upload the file
upload_task = None
for task in job["data"]["tasks"]:
if task["operation"] == "import/upload":
upload_task = task
break
if not upload_task:
raise Exception("Upload task not found in job")
upload_url = upload_task["result"]["form"]["url"]
form_data = upload_task["result"]["form"]["parameters"]
print("Uploading file to CloudConvert...")
with open(file_path, 'rb') as f:
files = {"file": f}
upload_response = requests.post(upload_url, data=form_data, files=files)
if not upload_response.ok:
print(f"Upload failed: {upload_response.text}")
upload_response.raise_for_status()
print("File uploaded successfully")
# Step 3: Wait for conversion to complete
job_id = job["data"]["id"]
print(f"Waiting for job {job_id} to complete...")
max_attempts = 30 # Wait up to 1 minute
for attempt in range(max_attempts):
status_response = requests.get(f"{base_url}/jobs/{job_id}", headers=headers)
status_response.raise_for_status()
job_status = status_response.json()
print(f"Job status: {job_status['data']['status']}")
if job_status["data"]["status"] == "finished":
print("Conversion completed successfully")
break
elif job_status["data"]["status"] == "error":
error_msg = job_status['data'].get('message', 'Unknown error')
print(f"Conversion failed: {error_msg}")
# Check task-level errors
for task in job_status.get('data', {}).get('tasks', []):
if task.get('status') == 'error':
task_error = task.get('message', 'Unknown task error')
print(f"Task {task.get('operation')} error: {task_error}")
raise Exception(f"Conversion failed: {error_msg}")
time.sleep(2) # Wait 2 seconds before checking again
else:
raise Exception("Conversion timeout - job took too long")
# Step 4: Download the converted text
for task in job_status["data"]["tasks"]:
if task["operation"] == "export/url" and task["status"] == "finished":
download_url = task["result"]["files"][0]["url"]
print(f"Downloading result from: {download_url}")
download_response = requests.get(download_url)
download_response.raise_for_status()
text_content = download_response.text
print(f"Downloaded {len(text_content)} characters")
return text_content
raise Exception("No converted file found in completed job")
except requests.exceptions.RequestException as e:
print(f"HTTP error: {e}")
raise Exception(f"CloudConvert HTTP error: {str(e)}")
except Exception as e:
print(f"General error: {e}")
raise Exception(f"CloudConvert error: {str(e)}")
@spaces.GPU
def convert_pages_document(file, output_format, progress=gr.Progress()):
"""Convert Pages document using CloudConvert + Novita"""
if not file:
return None, "β Please upload a .pages file"
if not cloudconvert_token:
return None, "β CloudConvert API key not configured. Please add CLOUDCONVERT_API_KEY to secrets."
try:
progress(0.1, desc="π€ Converting with CloudConvert...")
# Use CloudConvert to extract text from .pages file
print(f"Converting file: {file.name}")
text_content = convert_pages_to_text(file.name, cloudconvert_token)
if not text_content or len(text_content.strip()) < 10:
return None, "β Could not extract content from .pages file"
print(f"Extracted text preview: {text_content[:200]}...")
progress(0.5, desc="π€ Converting format with Cerebras AI...")
# Create format-specific prompt
prompt = create_conversion_prompt(text_content, output_format)
progress(0.7, desc="β‘ Processing with ZeroGPU...")
# Convert using Cerebras
try:
messages = [{"role": "user", "content": prompt}]
response = client.chat_completion(
messages=messages,
max_tokens=4096,
temperature=0.1
)
converted_text = response.choices[0].message.content
except Exception as e:
print(f"Cerebras error: {e}")
return None, f"β AI conversion error: {str(e)}"
progress(0.9, desc="πΎ Creating output file...")
# Create output file
output_path = create_output_file(converted_text, output_format)
progress(1.0, desc="β
Conversion complete!")
return output_path, f"β
Successfully converted to {output_format}!"
except Exception as e:
print(f"Conversion error: {e}")
return None, f"β Error: {str(e)}"
def create_conversion_prompt(content, output_format):
"""Create optimized prompt for format conversion"""
return f"""You are a document formatter. Convert the following text to {output_format} format.
IMPORTANT:
1. Keep ALL original content - do not summarize or remove text
2. Only adjust formatting for {output_format}
3. Preserve all important information, names, and details
Original text:
{content}
Formatted {output_format} output:"""
def create_output_file(content, output_format):
"""Create output file in specified format"""
content = content.strip()
if output_format == "PDF":
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import letter
import textwrap
with tempfile.NamedTemporaryFile(suffix='.pdf', delete=False) as f:
pdf = canvas.Canvas(f.name, pagesize=letter)
width, height = letter
y = height - 50
# Better paragraph handling
paragraphs = content.split('\n\n')
for paragraph in paragraphs:
if paragraph.strip():
lines = textwrap.wrap(paragraph.strip(), width=90)
for line in lines:
if y < 50:
pdf.showPage()
y = height - 50
pdf.drawString(50, y, line)
y -= 20
y -= 10 # Space between paragraphs
pdf.save()
return f.name
elif output_format == "DOCX":
from docx import Document
with tempfile.NamedTemporaryFile(suffix='.docx', delete=False) as f:
doc = Document()
# Add paragraphs
paragraphs = content.split('\n\n')
for paragraph in paragraphs:
if paragraph.strip():
doc.add_paragraph(paragraph.strip())
doc.save(f.name)
return f.name
else:
# For TXT, HTML, Markdown
ext_map = {"TXT": ".txt", "HTML": ".html", "Markdown": ".md"}
ext = ext_map.get(output_format, ".txt")
with tempfile.NamedTemporaryFile(mode='w', suffix=ext, delete=False, encoding='utf-8') as f:
f.write(content)
return f.name
# Create the Gradio interface
with gr.Blocks(title="Pages Converter Pro - CloudConvert", theme=gr.themes.Soft()) as app:
# Header
gr.HTML("""
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 1rem; margin-bottom: 2rem;">
<h1>π Pages Converter Pro</h1>
<p>Convert Apple Pages documents using CloudConvert + Cerebras AI</p>
<p style="font-size: 0.9em; opacity: 0.9;">β¨ Professional .pages parsing + AI-powered format conversion</p>
</div>
""")
# Status indicator
with gr.Row():
gr.HTML(f"""
<div style="background: {'#d4edda' if cloudconvert_token else '#f8d7da'}; color: {'#155724' if cloudconvert_token else '#721c24'}; padding: 1rem; border-radius: 0.5rem; text-align: center;">
<strong>CloudConvert API:</strong> {'β
Connected and Ready' if cloudconvert_token else 'β API Key Missing'}
</div>
""")
# Main interface
with gr.Row():
with gr.Column(scale=2):
gr.HTML("<h3>π Upload & Convert</h3>")
file_input = gr.File(
label="Select .pages file",
file_types=[".pages"]
)
output_format = gr.Radio(
choices=["PDF", "DOCX", "TXT", "HTML", "Markdown"],
value="PDF",
label="π― Output Format"
)
convert_btn = gr.Button(
"π Convert Document",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.HTML("""
<div style="background: white; padding: 1.5rem; border-radius: 1rem; box-shadow: 0 5px 15px rgba(0,0,0,0.1);">
<h3>β¨ Features</h3>
<ul style="color: #666;">
<li>β
<strong>100% reliable</strong> .pages parsing</li>
<li>β‘ ZeroGPU acceleration</li>
<li>π€ AI-powered formatting</li>
<li>π¨ Professional output quality</li>
<li>π Secure processing</li>
</ul>
<div style="background: #f5f5f5; padding: 1rem; border-radius: 0.5rem; margin-top: 1rem;">
<h4 style="margin-top: 0;">π‘ How it works:</h4>
<ol style="font-size: 0.9em; color: #555; margin-bottom: 0;">
<li>CloudConvert extracts text from .pages</li>
<li>Cerebras AI formats for your chosen output</li>
<li>Download your professionally converted file</li>
</ol>
</div>
</div>
""")
# Output section
with gr.Row():
output_file = gr.File(
label="π Download Your Converted File"
)
with gr.Row():
status_html = gr.HTML(
value="<div style='text-align: center; padding: 1rem; color: #666; background: #f8f9fa; border-radius: 0.5rem;'>Upload a .pages file to get started</div>"
)
# Connect the interface
convert_btn.click(
fn=convert_pages_document,
inputs=[file_input, output_format],
outputs=[output_file, status_html],
show_progress=True
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; padding: 1rem; background: #f8f9fa; border-radius: 0.5rem;">
<p style="margin-bottom: 0.5rem;">π§ <strong>Technical Stack:</strong></p>
<p style="font-size: 0.9em; color: #666; margin-bottom: 0;">
CloudConvert API for reliable .pages parsing β’ HuggingFace ZeroGPU for AI processing β’ Cerebras for lightning-fast inference
</p>
</div>
""")
# Launch the app
if __name__ == "__main__":
app.launch() |