File size: 4,956 Bytes
af4ff35
1550706
aff6746
af4ff35
aff6746
820ab2f
af4ff35
820ab2f
af4ff35
820ab2f
af4ff35
aff6746
 
1550706
aff6746
af4ff35
 
 
 
aff6746
 
af4ff35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff6746
1550706
aff6746
 
 
 
 
 
 
 
 
 
af4ff35
aff6746
 
 
820ab2f
af4ff35
 
 
aff6746
 
 
 
af4ff35
 
 
 
 
 
 
 
 
 
 
 
aff6746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af4ff35
aff6746
 
 
c155fa9
 
 
aff6746
 
c155fa9
aff6746
 
c155fa9
 
 
aff6746
 
 
 
 
 
 
 
 
 
 
 
af4ff35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff6746
af4ff35
aff6746
af4ff35
aff6746
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import jiwer
import spaces
import numpy as np
import gradio as gr

@spaces.GPU()
def calculate_wer(reference, hypothesis):
    """
    Calculate the Word Error Rate (WER) using jiwer.
    """
    wer = jiwer.wer(reference, hypothesis)
    return wer

@spaces.GPU()
def calculate_cer(reference, hypothesis):
    """
    Calculate the Character Error Rate (CER) using jiwer.
    """
    cer = jiwer.cer(reference, hypothesis)
    return cer

@spaces.GPU()
def calculate_sentence_wer(reference, hypothesis):
    """
    Calculate WER for each sentence and overall statistics.
    """
    reference_sentences = jiwer.split_into_sentences(reference)
    hypothesis_sentences = jiwer.split_into_sentences(hypothesis)

    if len(reference_sentences) != len(hypothesis_sentences):
        raise ValueError("Reference and hypothesis must contain the same number of sentences")

    sentence_wers = []
    for ref, hyp in zip(reference_sentences, hypothesis_sentences):
        sentence_wer = jiwer.wer(ref, hyp)
        sentence_wers.append(sentence_wer)

    if not sentence_wers:
        return {
            "sentence_wers": [],
            "average_wer": 0.0,
            "std_dev": 0.0
        }

    average_wer = np.mean(sentence_wers)
    std_dev = np.std(sentence_wers)

    return {
        "sentence_wers": sentence_wers,
        "average_wer": average_wer,
        "std_dev": std_dev
    }

@spaces.GPU()
def process_files(reference_file, hypothesis_file):
    try:
        with open(reference_file.name, 'r') as f:
            reference_text = f.read()

        with open(hypothesis_file.name, 'r') as f:
            hypothesis_text = f.read()

        wer_value = calculate_wer(reference_text, hypothesis_text)
        cer_value = calculate_cer(reference_text, hypothesis_text)
        sentence_wer_stats = calculate_sentence_wer(reference_text, hypothesis_text)

        return {
            "WER": wer_value,
            "CER": cer_value,
            "Sentence WERs": sentence_wer_stats["sentence_wers"],
            "Average WER": sentence_wer_stats["average_wer"],
            "Standard Deviation": sentence_wer_stats["std_dev"]
        }
    except Exception as e:
        return {"error": str(e)}

def format_sentence_wer_stats(sentence_wers, average_wer, std_dev):
    if not sentence_wers:
        return "All sentences match perfectly!"

    md = "### Sentence-level WER Analysis\n\n"
    md += f"* Average WER: {average_wer:.2f}\n"
    md += f"* Standard Deviation: {std_dev:.2f}\n\n"
    md += "### WER for Each Sentence\n\n"
    for i, wer in enumerate(sentence_wers):
        md += f"* Sentence {i+1}: {wer:.2f}\n"
    return md

def main():
    with gr.Blocks() as demo:
        gr.Markdown("# ASR Metrics Calculator")

        with gr.Row():
            reference_file = gr.File(label="Upload Reference File")
            hypothesis_file = gr.File(label="Upload Hypothesis File")

        with gr.Row():
            reference_preview = gr.Textbox(label="Reference Preview", lines=3)
            hypothesis_preview = gr.Textbox(label="Hypothesis Preview", lines=3)

        with gr.Row():
            compute_button = gr.Button("Compute Metrics")
            results_output = gr.JSON(label="Results")
            wer_stats_output = gr.Markdown(label="WER Statistics")

        # Update previews when files are uploaded
        def update_previews(ref_file, hyp_file):
            ref_text = ""
            hyp_text = ""

            if ref_file:
                with open(ref_file.name, 'r') as f:
                    ref_text = f.read()[:200]  # Show first 200 characters
            if hyp_file:
                with open(hyp_file.name, 'r') as f:
                    hyp_text = f.read()[:200]  # Show first 200 characters

            return ref_text, hyp_text

        reference_file.change(
            fn=update_previews,
            inputs=[reference_file, hypothesis_file],
            outputs=[reference_preview, hypothesis_preview]
        )
        hypothesis_file.change(
            fn=update_previews,
            inputs=[reference_file, hypothesis_file],
            outputs=[reference_preview, hypothesis_preview]
        )

        def process_and_display(ref_file, hyp_file):
            result = process_files(ref_file, hyp_file)
            if "error" in result:
                return {}, {}, "Error: " + result["error"]

            metrics = {
                "WER": result["WER"],
                "CER": result["CER"]
            }

            wer_stats_md = format_sentence_wer_stats(
                result["Sentence WERs"],
                result["Average WER"],
                result["Standard Deviation"]
            )

            return metrics, wer_stats_md

        compute_button.click(
            fn=process_and_display,
            inputs=[reference_file, hypothesis_file],
            outputs=[results_output, wer_stats_output]
        )

    demo.launch()

if __name__ == "__main__":
    main()