Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,73 @@
|
|
1 |
-
from transformers import
|
|
|
2 |
import torch
|
|
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
# Загрузка модели и
|
9 |
-
tokenizer =
|
10 |
-
model =
|
11 |
-
|
12 |
-
#
|
13 |
-
def
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
|
42 |
-
|
43 |
-
iface.launch()
|
44 |
|
45 |
|
|
|
1 |
+
from transformers import BertForSequenceClassification, BertTokenizerFast, Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset
|
3 |
import torch
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
import gradio as gr
|
7 |
|
8 |
+
# ❗ Загрузка датасета ZhenDOS/alpha_bank_data
|
9 |
+
dataset = load_dataset("ZhenDOS/alpha_bank_data")
|
10 |
+
|
11 |
+
# ✔️ Загрузка базовой модели и токенайзера
|
12 |
+
tokenizer = BertTokenizerFast.from_pretrained("DeepPavlov/rubert-base-cased")
|
13 |
+
model = BertForSequenceClassification.from_pretrained("DeepPavlov/rubert-base-cased", num_labels=len(dataset["train"].features["label"].names))
|
14 |
+
|
15 |
+
# ➕ Токенизация входных данных
|
16 |
+
def tokenize_function(examples):
|
17 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True)
|
18 |
+
|
19 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
20 |
+
|
21 |
+
# 🏃♂️ Настройки обучения
|
22 |
+
training_args = TrainingArguments(
|
23 |
+
output_dir="./results",
|
24 |
+
evaluation_strategy="epoch",
|
25 |
+
learning_rate=2e-5,
|
26 |
+
per_device_train_batch_size=16,
|
27 |
+
per_device_eval_batch_size=64,
|
28 |
+
num_train_epochs=3,
|
29 |
+
weight_decay=0.01,
|
30 |
+
)
|
31 |
+
|
32 |
+
# 💨 Процесс обучения
|
33 |
+
trainer = Trainer(
|
34 |
+
model=model,
|
35 |
+
args=training_args,
|
36 |
+
train_dataset=tokenized_datasets["train"],
|
37 |
+
eval_dataset=tokenized_datasets["validation"],
|
38 |
+
)
|
39 |
+
|
40 |
+
trainer.train()
|
41 |
+
|
42 |
+
# 📊 Функционал для демонстрации через Gradio
|
43 |
+
def classify_question(question):
|
44 |
+
tokens = tokenizer(question, return_tensors="pt")
|
45 |
+
outputs = model(**tokens)
|
46 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
47 |
+
pred_label_idx = torch.argmax(probabilities, dim=1).item()
|
48 |
+
categories = dataset["train"].features["label"].names
|
49 |
+
return {
|
50 |
+
"Вероятности классов": dict(zip(categories, probabilities.detach().numpy()[0])),
|
51 |
+
"Прогнозируемый класс": categories[pred_label_idx],
|
52 |
+
}
|
53 |
+
|
54 |
+
# 🖥️ Графический интерфейс Gradio
|
55 |
+
demo = gr.Interface(
|
56 |
+
fn=classify_question,
|
57 |
+
inputs="text",
|
58 |
+
outputs=[
|
59 |
+
gr.Label(label="Категории"),
|
60 |
+
gr.Textbox(label="Прогнозируемый класс"),
|
61 |
+
],
|
62 |
+
examples=[
|
63 |
+
["Как перевести деньги между картами?"],
|
64 |
+
["Что такое кредитная история?"],
|
65 |
+
["Почему моя карта заблокирована?"],
|
66 |
+
],
|
67 |
+
title="Классификация клиентских запросов банка",
|
68 |
+
description="Приложение помогает определить категорию клиентского запроса и оценить вероятность принадлежности каждого класса.",
|
69 |
)
|
70 |
|
71 |
+
demo.launch()
|
|
|
72 |
|
73 |
|