Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
from datasets import load_dataset
|
|
|
4 |
|
5 |
-
# 1. Загрузка датасета
|
6 |
try:
|
7 |
dataset = load_dataset("blinoff/ru_customer_support", split="train[:50]")
|
8 |
examples = [d["question"] for d in dataset]
|
@@ -15,40 +16,55 @@ except Exception as e:
|
|
15 |
"Ошибка при оплате картой"
|
16 |
]
|
17 |
|
18 |
-
# 2. Загрузка модели
|
19 |
try:
|
20 |
-
model_name = "ai-forever/rugpt3small_based_on_gpt2"
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
25 |
generator = pipeline(
|
26 |
"text-generation",
|
27 |
model=model,
|
28 |
tokenizer=tokenizer,
|
29 |
-
device="cpu"
|
30 |
)
|
|
|
31 |
except Exception as e:
|
32 |
raise RuntimeError(f"Ошибка загрузки модели: {str(e)}")
|
33 |
|
34 |
# 3. Функция генерации ответа
|
35 |
-
def generate_response(message):
|
36 |
prompt = f"""Ты оператор поддержки. Ответь клиенту вежливо на русском.
|
37 |
|
|
|
|
|
38 |
Клиент: {message}
|
39 |
Оператор:"""
|
40 |
|
41 |
try:
|
42 |
response = generator(
|
43 |
prompt,
|
44 |
-
max_new_tokens=
|
45 |
-
temperature=0.
|
46 |
do_sample=True,
|
47 |
-
top_p=0.9
|
|
|
48 |
)
|
49 |
return response[0]["generated_text"].split("Оператор:")[-1].strip()
|
50 |
except Exception as e:
|
51 |
-
return f"
|
52 |
|
53 |
# 4. Интерфейс Gradio
|
54 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
@@ -56,14 +72,15 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
56 |
|
57 |
with gr.Row():
|
58 |
with gr.Column():
|
59 |
-
chatbot = gr.Chatbot(height=350)
|
60 |
-
msg = gr.Textbox(label="Опишите проблему")
|
61 |
btn = gr.Button("Отправить", variant="primary")
|
62 |
|
63 |
with gr.Column():
|
64 |
gr.Examples(examples, inputs=msg, label="Примеры обращений")
|
65 |
-
gr.Markdown("
|
66 |
|
67 |
-
btn.click(
|
|
|
68 |
|
69 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
from datasets import load_dataset
|
4 |
+
import torch
|
5 |
|
6 |
+
# 1. Загрузка датасета
|
7 |
try:
|
8 |
dataset = load_dataset("blinoff/ru_customer_support", split="train[:50]")
|
9 |
examples = [d["question"] for d in dataset]
|
|
|
16 |
"Ошибка при оплате картой"
|
17 |
]
|
18 |
|
19 |
+
# 2. Загрузка модели с обработкой ошибок
|
20 |
try:
|
21 |
+
model_name = "ai-forever/rugpt3small_based_on_gpt2"
|
22 |
|
23 |
+
# Явно указываем доверенный источник
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
25 |
+
model_name,
|
26 |
+
trust_remote_code=True
|
27 |
+
)
|
28 |
+
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
model_name,
|
31 |
+
trust_remote_code=True,
|
32 |
+
torch_dtype=torch.float16,
|
33 |
+
device_map="auto"
|
34 |
+
)
|
35 |
|
36 |
+
# Создаем pipeline с правильными параметрами
|
37 |
generator = pipeline(
|
38 |
"text-generation",
|
39 |
model=model,
|
40 |
tokenizer=tokenizer,
|
41 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
42 |
)
|
43 |
+
|
44 |
except Exception as e:
|
45 |
raise RuntimeError(f"Ошибка загрузки модели: {str(e)}")
|
46 |
|
47 |
# 3. Функция генерации ответа
|
48 |
+
def generate_response(message, history):
|
49 |
prompt = f"""Ты оператор поддержки. Ответь клиенту вежливо на русском.
|
50 |
|
51 |
+
История диалога:
|
52 |
+
{history}
|
53 |
Клиент: {message}
|
54 |
Оператор:"""
|
55 |
|
56 |
try:
|
57 |
response = generator(
|
58 |
prompt,
|
59 |
+
max_new_tokens=200,
|
60 |
+
temperature=0.7,
|
61 |
do_sample=True,
|
62 |
+
top_p=0.9,
|
63 |
+
repetition_penalty=1.1
|
64 |
)
|
65 |
return response[0]["generated_text"].split("Оператор:")[-1].strip()
|
66 |
except Exception as e:
|
67 |
+
return f"Ошибка генерации ответа: {str(e)}"
|
68 |
|
69 |
# 4. Интерфейс Gradio
|
70 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
72 |
|
73 |
with gr.Row():
|
74 |
with gr.Column():
|
75 |
+
chatbot = gr.Chatbot(height=350, label="Диалог")
|
76 |
+
msg = gr.Textbox(label="Опишите проблему", placeholder="Введите ваше сообщение...")
|
77 |
btn = gr.Button("Отправить", variant="primary")
|
78 |
|
79 |
with gr.Column():
|
80 |
gr.Examples(examples, inputs=msg, label="Примеры обращений")
|
81 |
+
gr.Markdown("**Рекомендации:**\n1. Укажите номер заказа\n2. Опишите проблему подробно")
|
82 |
|
83 |
+
btn.click(generate_response, [msg, chatbot], [chatbot])
|
84 |
+
msg.submit(generate_response, [msg, chatbot], [chatbot])
|
85 |
|
86 |
demo.launch()
|