import albumentations as A import cv2 import torch from albumentations.pytorch import ToTensorV2 from utils import seed_everything DATASET = 'PASCAL_VOC' DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # seed_everything() # If you want deterministic behavior NUM_WORKERS = 0 BATCH_SIZE = 2 DIV = 32 IMAGE_SIZES = [416, 416, 416, 608, 608] S = [[x//DIV, x//DIV*2, x//DIV*4] for x in IMAGE_SIZES] NUM_CLASSES = 20 LEARNING_RATE = 1e-5 WEIGHT_DECAY = 1e-4 NUM_EPOCHS = 10 CONF_THRESHOLD = 0.05 MAP_IOU_THRESH = 0.5 NMS_IOU_THRESH = 0.45 PIN_MEMORY = True LOAD_MODEL = False SAVE_MODEL = True CHECKPOINT_FILE = "checkpoint.pth.tar" IMG_DIR = DATASET + "/images/" LABEL_DIR = DATASET + "/labels/" MOSAIC_PROB = 0.75 INFERENCE_IMAGE_SIZE = 416 ANCHORS = [ [(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)], [(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)], [(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)], ] # Note these have been rescaled to be between [0, 1] means = [0.45484068, 0.43406072, 0.40103856] stds = [0.23936155, 0.23471538, 0.23876129] scale = 1.1 def train_transform(IMAGE_SIZE): train_transforms = A.Compose( [ A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)), A.PadIfNeeded( min_height=int(IMAGE_SIZE * scale), min_width=int(IMAGE_SIZE * scale), border_mode=cv2.BORDER_CONSTANT, ), A.Rotate(limit = 10, interpolation=1, border_mode=4), A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE), A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4), A.OneOf( [ A.ShiftScaleRotate( rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT ), # A.Affine(shear=15, p=0.5, mode="constant"), ], p=1.0, ), A.HorizontalFlip(p=0.5), A.Blur(p=0.1), A.CLAHE(p=0.1), A.Posterize(p=0.1), A.ToGray(p=0.1), A.ChannelShuffle(p=0.05), A.Normalize(mean=means, std=stds, max_pixel_value=255,), ToTensorV2(), ], bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],), ) return(train_transforms) def test_transform(IMAGE_SIZE=416): test_transforms = A.Compose( [ A.LongestMaxSize(max_size=IMAGE_SIZE), A.PadIfNeeded( min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT ), A.Normalize(mean=means, std=stds, max_pixel_value=255,), ToTensorV2(), ], bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]), ) return(test_transforms) PASCAL_CLASSES = [ "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor" ]