Spaces:
Runtime error
Runtime error
Upload lightning_utils.py
Browse files- lightning_utils.py +171 -0
lightning_utils.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from torch.utils.data import Dataset, DataLoader
|
3 |
+
from loss import YoloLoss
|
4 |
+
import config
|
5 |
+
import torch
|
6 |
+
from dataset import YOLODataset
|
7 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
8 |
+
import random
|
9 |
+
from model import YOLOv3
|
10 |
+
import lightning.pytorch as pl
|
11 |
+
|
12 |
+
def criterion(out, y, anchors):
|
13 |
+
loss_fn = YoloLoss()
|
14 |
+
loss = (
|
15 |
+
loss_fn(out[0], y[0], anchors[0])
|
16 |
+
+ loss_fn(out[1], y[1], anchors[1])
|
17 |
+
+ loss_fn(out[2], y[2], anchors[2]))
|
18 |
+
return loss
|
19 |
+
|
20 |
+
|
21 |
+
def get_loader(train_dataset, test_dataset):
|
22 |
+
train_loader = DataLoader(
|
23 |
+
dataset=train_dataset,
|
24 |
+
batch_size=config.BATCH_SIZE,
|
25 |
+
num_workers=config.NUM_WORKERS,
|
26 |
+
pin_memory=config.PIN_MEMORY,
|
27 |
+
shuffle=True,
|
28 |
+
drop_last=False,
|
29 |
+
)
|
30 |
+
|
31 |
+
test_loader = DataLoader(
|
32 |
+
dataset=test_dataset,
|
33 |
+
batch_size=config.BATCH_SIZE,
|
34 |
+
num_workers=config.NUM_WORKERS,
|
35 |
+
pin_memory=config.PIN_MEMORY,
|
36 |
+
shuffle=False,
|
37 |
+
drop_last=False,
|
38 |
+
|
39 |
+
)
|
40 |
+
|
41 |
+
return(train_loader, test_loader)
|
42 |
+
|
43 |
+
|
44 |
+
def accuracy_fn(y, out, threshold,
|
45 |
+
correct_class, correct_obj,
|
46 |
+
correct_noobj, tot_class_preds,
|
47 |
+
tot_obj, tot_noobj):
|
48 |
+
|
49 |
+
for i in range(3):
|
50 |
+
|
51 |
+
obj = y[i][..., 0] == 1 # in paper this is Iobj_i
|
52 |
+
noobj = y[i][..., 0] == 0 # in paper this is Iobj_i
|
53 |
+
|
54 |
+
correct_class += torch.sum(
|
55 |
+
torch.argmax(out[i][..., 5:][obj], dim=-1) == y[i][..., 5][obj]
|
56 |
+
)
|
57 |
+
tot_class_preds += torch.sum(obj)
|
58 |
+
|
59 |
+
obj_preds = torch.sigmoid(out[i][..., 0]) > threshold
|
60 |
+
correct_obj += torch.sum(obj_preds[obj] == y[i][..., 0][obj])
|
61 |
+
tot_obj += torch.sum(obj)
|
62 |
+
correct_noobj += torch.sum(obj_preds[noobj] == y[i][..., 0][noobj])
|
63 |
+
tot_noobj += torch.sum(noobj)
|
64 |
+
|
65 |
+
return((correct_class/(tot_class_preds+1e-16))*100,
|
66 |
+
(correct_noobj/(tot_noobj+1e-16))*100,
|
67 |
+
(correct_obj/(tot_obj+1e-16))*100)
|
68 |
+
|
69 |
+
|
70 |
+
def get_datasets(train_loc="/train.csv", test_loc="/test.csv"):
|
71 |
+
|
72 |
+
train_dataset = YOLODataset(
|
73 |
+
config.DATASET + train_loc,
|
74 |
+
transform=config.train_transform,
|
75 |
+
img_dir=config.IMG_DIR,
|
76 |
+
label_dir=config.LABEL_DIR,
|
77 |
+
anchors=config.ANCHORS,
|
78 |
+
)
|
79 |
+
|
80 |
+
test_dataset = YOLODataset(
|
81 |
+
config.DATASET + test_loc,
|
82 |
+
transform=config.test_transform,
|
83 |
+
img_dir=config.IMG_DIR,
|
84 |
+
label_dir=config.LABEL_DIR,
|
85 |
+
anchors=config.ANCHORS,
|
86 |
+
train=False
|
87 |
+
)
|
88 |
+
|
89 |
+
return(train_dataset, test_dataset)
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
class YOLOv3Lightning(pl.LightningModule):
|
94 |
+
def __init__(self, dataset=None, lr=config.LEARNING_RATE):
|
95 |
+
super().__init__()
|
96 |
+
|
97 |
+
self.save_hyperparameters()
|
98 |
+
|
99 |
+
self.model = YOLOv3(num_classes=config.NUM_CLASSES)
|
100 |
+
self.lr = lr
|
101 |
+
self.criterion = criterion
|
102 |
+
self.losses = []
|
103 |
+
self.threshold = config.CONF_THRESHOLD
|
104 |
+
self.iou_threshold = config.NMS_IOU_THRESH
|
105 |
+
self.train_idx = 0
|
106 |
+
self.box_format="midpoint"
|
107 |
+
self.dataset = dataset
|
108 |
+
self.criterion = criterion
|
109 |
+
self.accuracy_fn = accuracy_fn
|
110 |
+
self.tot_class_preds, self.correct_class = 0, 0
|
111 |
+
self.tot_noobj, self.correct_noobj = 0, 0
|
112 |
+
self.tot_obj, self.correct_obj = 0, 0
|
113 |
+
self.scaled_anchors = 0
|
114 |
+
|
115 |
+
def forward(self, x):
|
116 |
+
return self.model(x)
|
117 |
+
|
118 |
+
def set_scaled_anchor(self, scaled_anchors):
|
119 |
+
self.scaled_anchors = scaled_anchors
|
120 |
+
|
121 |
+
def on_train_epoch_start(self):
|
122 |
+
# Set a new image size for the dataset at the beginning of each epoch
|
123 |
+
size_idx = random.choice(range(len(config.IMAGE_SIZES)))
|
124 |
+
self.dataset.set_image_size(size_idx)
|
125 |
+
self.set_scaled_anchor((
|
126 |
+
torch.tensor(config.ANCHORS)
|
127 |
+
* torch.tensor(config.S[size_idx]).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
128 |
+
))
|
129 |
+
|
130 |
+
def on_validation_epoch_start(self):
|
131 |
+
self.set_scaled_anchor((
|
132 |
+
torch.tensor(config.ANCHORS)
|
133 |
+
* torch.tensor(config.S[1]).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
134 |
+
))
|
135 |
+
|
136 |
+
|
137 |
+
def training_step(self, batch, batch_idx):
|
138 |
+
x, y = batch
|
139 |
+
out = self(x)
|
140 |
+
loss = self.criterion(out, y, self.scaled_anchors)
|
141 |
+
|
142 |
+
self.log('train_loss', loss, prog_bar=True, on_epoch=True, on_step=True, logger=True)
|
143 |
+
|
144 |
+
return loss
|
145 |
+
|
146 |
+
def validation_step(self, val_batch, batch_idx):
|
147 |
+
x, labels = val_batch
|
148 |
+
out = self(x)
|
149 |
+
|
150 |
+
loss = self.criterion(out, labels, self.scaled_anchors)
|
151 |
+
self.log('val_loss', loss, prog_bar=True, on_epoch=True)
|
152 |
+
|
153 |
+
self.evaluate(x, labels, out, 'val')
|
154 |
+
|
155 |
+
|
156 |
+
def evaluate(self, x, y, out, stage=None):
|
157 |
+
|
158 |
+
# Class Accuracy
|
159 |
+
class_accuracy, no_obj_accuracy, obj_accuracy = self.accuracy_fn(y,
|
160 |
+
out,
|
161 |
+
self.threshold,
|
162 |
+
self.correct_class,
|
163 |
+
self.correct_obj,
|
164 |
+
self.correct_noobj,
|
165 |
+
self.tot_class_preds,
|
166 |
+
self.tot_obj,
|
167 |
+
self.tot_noobj, )
|
168 |
+
if stage:
|
169 |
+
self.log(f'{stage}_class_accuracy', class_accuracy, prog_bar=True, on_epoch=True, on_step=True, logger=True)
|
170 |
+
self.log(f'{stage}_no_obj_accuracy', no_obj_accuracy, prog_bar=True, on_epoch=True, on_step=True, logger=True)
|
171 |
+
self.log(f'{stage}_obj_accuracy', obj_accuracy, prog_bar=True, on_epoch=True, on_step=True, logger=True)
|