YOLOV3-GradCAM / app.py
Sijuade's picture
Update app.py
301bf24
import config
import numpy as np
import gradio as gr
from PIL import Image
import torch, torchvision
from torchvision import transforms
from gradio_utils import (
generate_html,
get_examples,
upload_image_inference
)
show_label = True
examples = get_examples()
iou_thresh, thresh = 0.8, 0.8
with gr.Blocks() as gradcam:
gr.HTML(value=generate_html, show_label=show_label)
with gr.Row():
upload_input = [gr.Image(shape=(config.INFERENCE_IMAGE_SIZE,
config.INFERENCE_IMAGE_SIZE)),
gr.Slider(0, 1, label='Transparency', value=0.6)]
with gr.Row():
upload_output = [
gr.AnnotatedImage(label='BBox Prediction',
height=config.INFERENCE_IMAGE_SIZE,
width=config.INFERENCE_IMAGE_SIZE),
gr.Gallery(label="Grad-CAM Output",
show_label=True, min_width=120)]
with gr.Row():
inference_button = gr.Button("Perform Inference")
inference_button.click(upload_image_inference,
inputs=upload_input,
outputs=upload_output)
with gr.Row():
gr.Examples(examples=examples, inputs=upload_input, outputs=upload_output, fn=upload_image_inference, cache_examples=True,)
gradcam.launch(debug=True)