File size: 7,552 Bytes
a00793d
 
 
 
 
 
 
 
 
 
 
 
ff74203
a00793d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e3ffd
 
a00793d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28681a7
 
ff74203
a00793d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28681a7
8f5924c
 
a00793d
 
 
 
 
 
 
 
 
 
245ffee
8f5924c
ff74203
 
 
 
 
a00793d
ff74203
245ffee
a00793d
 
245ffee
d795753
245ffee
 
a00793d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import random
import torch
from albumentations.pytorch import ToTensorV2
import albumentations as A
import cv2
import glob2
import config
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from lightning_utils import YOLOv3Lightning
from pytorch_grad_cam import GradCAM, EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
from pytorch_grad_cam.utils.model_targets import FasterRCNNBoxScoreTarget

from utils import cells_to_bboxes, non_max_suppression


cmap = plt.get_cmap("tab20b")
class_labels = config.PASCAL_CLASSES
height, width = config.INFERENCE_IMAGE_SIZE, config.INFERENCE_IMAGE_SIZE
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]

icons = [
    'flight', 'pedal_bike', 'flutter_dash', 'sailing',
    'liquor', 'directions_bus', 'directions_car',
    'pets', "chair", 'pets', 'table_restaurant',
    'pets', 'bedroom_baby', 'motorcycle', 'person', 'yard',
    'kebab_dining', 'chair', "train", "tvmonitor"]

icons_mapping = {config.PASCAL_CLASSES[i]:icons[i] for i in range(len(icons))}

model = YOLOv3Lightning.load_from_checkpoint('YoLoV3Model2.ckpt',
                                              map_location=torch.device('cpu'))
model.eval()

scaled_anchors = (
        torch.tensor(config.ANCHORS)
        * torch.tensor(config.S[0]).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
    ).to(config.DEVICE)

def get_examples():
  example_images = glob2.glob('*.jpg')
  example_transparency = [random.choice([0.7, 0.8]) for r in range(len(example_images))]
  examples = [[example_images[i], example_transparency[i]] for i in range(len(example_images))]
  return(examples)



def yolov3_reshape_transform(x):
  activations = []
  size = x[0].size()[2:4]

  for x_item in x:
    x_permute = x_item.permute(0, 1, 4, 2, 3 )
    x_permute = x_permute.reshape((x_permute.shape[0], 
                                   x_permute.shape[1]*x_permute.shape[2], 
                                   *x_permute.shape[3:]))
    activations.append(torch.nn.functional.interpolate(torch.abs(x_permute), size, mode='bilinear'))

  activations = torch.cat(activations, axis=1)

  return(activations)


def infer_transform(IMAGE_SIZE=config.INFERENCE_IMAGE_SIZE):
    transforms = A.Compose(
        [
            A.LongestMaxSize(max_size=IMAGE_SIZE),
            A.PadIfNeeded(
                min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
            ),
            A.Normalize(mean=[0.45484068, 0.43406072, 0.40103856], 
                        std=[0.23936155, 0.23471538, 0.23876129], 
                        max_pixel_value=255,),
            ToTensorV2(),
        ]
  )
    return(transforms)

def generate_html():
    # Start the HTML string with some style and the Material Icons stylesheet
    classes = config.PASCAL_CLASSES
    html_string = """
    <link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">
    <style>
        .title {
            font-size: 24px;
            font-weight: bold;
            text-align: center;
            margin-bottom: 20px;
            color: #4a4a4a;
        }
        .subtitle {
            font-size: 18px;
            text-align: center;
            margin-bottom: 10px;
            color: #7a7a7a;
        }
        .class-container {
            display: flex;
            flex-wrap: wrap;
            justify-content: center;
            align-items: center;
            padding: 20px;
            border: 2px solid #e0e0e0;
            border-radius: 10px;
            background-color: #f5f5f5;
        }
        .class-item {
            display: inline-flex;  /* Changed from flex to inline-flex */
            align-items: center;
            margin: 5px 10px;
            padding: 5px 8px;     /* Adjusted padding */
            border: 1px solid #d1d1d1;
            border-radius: 20px;
            background-color: #ffffff;
            font-weight: bold;
            color: #333;
            box-shadow: 2px 2px 5px rgba(0, 0, 0, 0.1);
            transition: transform 0.2s, box-shadow 0.2s;
        }
        .class-item:hover {
            transform: scale(1.05);
            box-shadow: 2px 2px 10px rgba(0, 0, 0, 0.2);
            background-color: #e7e7e7;
        }
        .material-icons {
            margin-right: 8px;
        }
    </style>
    <div class="title">Object Detection Prediction & Grad-Cam for YOLOv3</div>
    <div class="subtitle">Supported Classes</div>
    <div class="class-container">
    """

    # Loop through each class and add it to the HTML string with its corresponding icon
    for class_name in classes:
        icon_name = class_name.lower()  # Assuming the icon name is the lowercase version of the class name
        icon_name = icons_mapping[icon_name]
        html_string += f'<div class="class-item"><i class="material-icons">{icon_name}</i>{class_name}</div>'

    # Close the HTML string
    html_string += "</div>"

    return html_string



def upload_image_inference(img, transparency):
  bboxes = [[] for _ in range(1)]
  nms_boxes_output, annotations = [], []
  img_copy = img.copy()

  transform = infer_transform()
  img = transform(image=img)['image'].unsqueeze(0)

  out = model(img)

  for i in range(3):
      batch_size, A, S, _, _ = out[i].shape
      anchor = scaled_anchors[i]
      boxes_scale_i = cells_to_bboxes(
          out[i], anchor, S=S, is_preds=True
      )

      for idx, (box) in enumerate(boxes_scale_i):
          bboxes[idx] += box

  for i in range(img.shape[0]):
      iou_thresh, thresh = 0.5, 0.6
      nms_boxes = non_max_suppression(
          bboxes[i], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
      )

      nms_boxes_output.append(nms_boxes)

  for box in nms_boxes_output[0]:
    class_prediction = int(box[0])
    box = box[2:]

    upper_left_x = box[0] - box[2] / 2
    upper_left_y = box[1] - box[3] / 2
    rect = patches.Rectangle(
            (upper_left_x * width, upper_left_y * height),
            box[2] * width,
            box[3] * height,
            linewidth=2,
            edgecolor=colors[class_prediction],
            facecolor="none",
    )
    rect = rect.get_bbox().get_points()
    annotations.append([rect[0].astype(int).tolist()+rect[1].astype(int).tolist(),
                        config.PASCAL_CLASSES[class_prediction]])


  new_bboxes = [a[0] for a in annotations]
  new_bboxes = [box for box in new_bboxes if all(val >= 0 for val in box)]
    
  objs = [b[1] for b in nms_boxes_output[0]]
  bbox_coord = [b[2:] for b in nms_boxes_output[0]]
  targets = [FasterRCNNBoxScoreTarget(objs, bbox_coord)]

  cam = EigenCAM(model=model, 
                target_layers=[model.model], 
                reshape_transform=yolov3_reshape_transform)

  grayscale_cam = cam(input_tensor=img, targets=targets)
  grayscale_cam = grayscale_cam[0, :]
    
  visualization = show_cam_on_image(img_copy/255, grayscale_cam, use_rgb=True, image_weight=transparency)

  renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)

  for x1, y1, x2, y2 in new_bboxes:
    renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())  
  
  renormalized_cam = scale_cam_image(renormalized_cam)
  eigencam_image_renormalized = show_cam_on_image(np.float32(img_copy)/255, renormalized_cam, use_rgb=True, image_weight=transparency)

  return([[img_copy, annotations],
          [grayscale_cam, 
           renormalized_cam,
           visualization,
           eigencam_image_renormalized]])