File size: 4,010 Bytes
59d89c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
os.environ["STREAMLIT_SERVER_ENABLE_FILE_WATCHER"] = "false"

import logging
from dotenv import load_dotenv
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_groq import ChatGroq

# Load environment variables
load_dotenv()

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)

# Function to extract text from PDF files
def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text() or ""
    return text

# Function to split the extracted text into chunks
def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    return text_splitter.split_text(text)

# Function to create a FAISS vectorstore using Hugging Face embeddings
def get_vectorstore(text_chunks):
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore

# Function to set up the conversational retrieval chain with memory
def get_conversation_chain(vectorstore):
    try:
        groq_api_key = os.getenv("GROQ_API_KEY")
        llm = ChatGroq(model="llama3-8b-8192", api_key=groq_api_key, temperature=0.5)
        
        memory = ConversationBufferMemory(
            memory_key='chat_history', 
            return_messages=True
        )
        
        conversation_chain = ConversationalRetrievalChain.from_llm(
            llm=llm,
            retriever=vectorstore.as_retriever(),
            memory=memory
        )
        
        logging.info("Conversation chain created successfully.")
        return conversation_chain
    except Exception as e:
        logging.error(f"Error creating conversation chain: {e}")
        st.error("An error occurred while setting up the conversation chain.")

# Handle user input
def handle_userinput(user_question):
    if st.session_state.conversation:
        response = st.session_state.conversation({'question': user_question})
        
        if 'chat_history' in response:
            for i, msg in enumerate(response['chat_history']):
                if i % 2 == 0:
                    st.write(f"**You:** {msg.content}")
                else:
                    st.write(f"**Bot:** {msg.content}")
        else:
            st.write(f"**Bot:** {response['answer']}")
    else:
        st.warning("Please process the documents first.")

# Main function to run the Streamlit app
def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")

    if "conversation" not in st.session_state:
        st.session_state.conversation = None

    st.header("Chat with multiple PDFs :books:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        pdf_docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True
        )
        if st.button("Process"):
            with st.spinner("Processing..."):
                raw_text = get_pdf_text(pdf_docs)
                text_chunks = get_text_chunks(raw_text)
                vectorstore = get_vectorstore(text_chunks)
                st.session_state.conversation = get_conversation_chain(vectorstore)

if __name__ == '__main__':
    main()