import gradio as gr from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModel import torch # --- Model Loading --- tokenizer_splade = None model_splade = None tokenizer_splade_lexical = None model_splade_lexical = None tokenizer_splade_doc = None model_splade_doc = None # Load SPLADE v3 model (original) try: tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil") model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil") model_splade.eval() # Set to evaluation mode for inference print("SPLADE-cocondenser-distil model loaded successfully!") except Exception as e: print(f"Error loading SPLADE-cocondenser-distil model: {e}") print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.") # Load SPLADE v3 Lexical model try: splade_lexical_model_name = "naver/splade-v3-lexical" tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name) model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name) model_splade_lexical.eval() # Set to evaluation mode for inference print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!") except Exception as e: print(f"Error loading SPLADE-v3-Lexical model: {e}") print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).") # Load SPLADE v3 Doc model try: splade_doc_model_name = "naver/splade-v3-doc" tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name) model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name) model_splade_doc.eval() # Set to evaluation mode for inference print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!") except Exception as e: print(f"Error loading SPLADE-v3-Doc model: {e}") print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).") # --- Helper function for lexical mask --- def create_lexical_bow_mask(input_ids, vocab_size, tokenizer): """ Creates a binary bag-of-words mask from input_ids, zeroing out special tokens and padding. """ bow_mask = torch.zeros(vocab_size, device=input_ids.device) meaningful_token_ids = [] for token_id in input_ids.squeeze().tolist(): if token_id not in [ tokenizer.pad_token_id, tokenizer.cls_token_id, tokenizer.sep_token_id, tokenizer.mask_token_id, tokenizer.unk_token_id ]: meaningful_token_ids.append(token_id) if meaningful_token_ids: bow_mask[list(set(meaningful_token_ids))] = 1 return bow_mask.unsqueeze(0) # --- Core Representation Functions --- def get_splade_cocondenser_representation(text): if tokenizer_splade is None or model_splade is None: return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors." inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to(model_splade.device) for k, v in inputs.items()} with torch.no_grad(): output = model_splade(**inputs) if hasattr(output, 'logits'): # Standard SPLADE calculation for learned weighting and expansion splade_vector = torch.max( torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1 )[0].squeeze() else: return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found." indices = torch.nonzero(splade_vector).squeeze().cpu().tolist() if not isinstance(indices, list): indices = [indices] values = splade_vector[indices].cpu().tolist() token_weights = dict(zip(indices, values)) meaningful_tokens = {} for token_id, weight in token_weights.items(): decoded_token = tokenizer_splade.decode([token_id]) if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0: meaningful_tokens[decoded_token] = weight sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True) formatted_output = "SPLADE-cocondenser-distil Representation (Weighting and Expansion):\n" if not sorted_representation: formatted_output += "No significant terms found for this input.\n" else: for term, weight in sorted_representation: formatted_output += f"- **{term}**: {weight:.4f}\n" formatted_output += "\n--- Raw SPLADE Vector Info ---\n" formatted_output += f"Total non-zero terms in vector: {len(indices)}\n" formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n" return formatted_output def get_splade_lexical_representation(text): if tokenizer_splade_lexical is None or model_splade_lexical is None: return "SPLADE-v3-Lexical model is not loaded. Please check the console for loading errors." inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()} with torch.no_grad(): output = model_splade_lexical(**inputs) if hasattr(output, 'logits'): splade_vector = torch.max( torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1 )[0].squeeze() else: return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found." # Always apply lexical mask for this model's specific behavior vocab_size = tokenizer_splade_lexical.vocab_size bow_mask = create_lexical_bow_mask( inputs['input_ids'], vocab_size, tokenizer_splade_lexical ).squeeze() splade_vector = splade_vector * bow_mask indices = torch.nonzero(splade_vector).squeeze().cpu().tolist() if not isinstance(indices, list): indices = [indices] values = splade_vector[indices].cpu().tolist() token_weights = dict(zip(indices, values)) meaningful_tokens = {} for token_id, weight in token_weights.items(): decoded_token = tokenizer_splade_lexical.decode([token_id]) if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0: meaningful_tokens[decoded_token] = weight sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True) formatted_output = "SPLADE-v3-Lexical Representation (Weighting):\n" if not sorted_representation: formatted_output += "No significant terms found for this input.\n" else: for term, weight in sorted_representation: formatted_output += f"- **{term}**: {weight:.4f}\n" formatted_output += "\n--- Raw SPLADE Vector Info ---\n" formatted_output += f"Total non-zero terms in vector: {len(indices)}\n" formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n" return formatted_output # Function for SPLADE-v3-Doc representation (Binary Sparse - Lexical Only) def get_splade_doc_representation(text): if tokenizer_splade_doc is None or model_splade_doc is None: return "SPLADE-v3-Doc model is not loaded. Please check the console for loading errors." inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()} with torch.no_grad(): output = model_splade_doc(**inputs) if not hasattr(output, "logits"): return "SPLADE-v3-Doc model output structure not as expected. 'logits' not found." # For SPLADE-v3-Doc, assuming output is designed to be binary and lexical-only. # We will derive the output directly from the input tokens themselves, # as the model's primary role in this context is as a pre-trained LM feature extractor # for a document-side, lexical-only binary sparse representation. vocab_size = tokenizer_splade_doc.vocab_size binary_splade_vector = create_lexical_bow_mask( # Use the BOW mask directly for binary inputs['input_ids'], vocab_size, tokenizer_splade_doc ).squeeze() indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist() if not isinstance(indices, list): indices = [indices] if indices else [] values = [1.0] * len(indices) # All values are 1 for binary representation token_weights = dict(zip(indices, values)) meaningful_tokens = {} for token_id, weight in token_weights.items(): decoded_token = tokenizer_splade_doc.decode([token_id]) if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0: meaningful_tokens[decoded_token] = weight sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity formatted_output = "SPLADE-v3-Doc Representation (Binary):\n" if not sorted_representation: formatted_output += "No significant terms found for this input.\n" else: for i, (term, _) in enumerate(sorted_representation): if i >= 50: # Limit display for very long lists formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n" break formatted_output += f"- **{term}**\n" formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n" formatted_output += f"Total activated terms: {len(indices)}\n" formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_doc.vocab_size):.2%}\n" return formatted_output # --- Unified Prediction Function for Gradio --- def predict_representation(model_choice, text): if model_choice == "SPLADE-cocondenser-distil (weighting and expansion)": return get_splade_cocondenser_representation(text) elif model_choice == "SPLADE-v3-Lexical (weighting)": return get_splade_lexical_representation(text) elif model_choice == "SPLADE-v3-Doc (binary)": return get_splade_doc_representation(text) else: return "Please select a model." # --- Gradio Interface Setup --- demo = gr.Interface( fn=predict_representation, inputs=[ gr.Radio( [ "SPLADE-cocondenser-distil (weighting and expansion)", "SPLADE-v3-Lexical (weighting)", "SPLADE-v3-Doc (binary)" ], label="Choose Representation Model", value="SPLADE-cocondenser-distil (weighting and expansion)" # Corrected default value ), gr.Textbox( lines=5, label="Enter your query or document text here:", placeholder="e.g., Why is Padua the nicest city in Italy?" ) ], outputs=gr.Markdown(), title="🌌 Sparse Representation Generator", description="Explore different SPLADE models and their sparse representation types: weighted and expansive, weighted and lexical-only, or strictly binary.", allow_flagging="never" ) # Launch the Gradio app demo.launch()