import gradio as gr from transformers import AutoTokenizer, AutoModelForMaskedLM import torch import numpy as np from tqdm.auto import tqdm import os import ir_datasets # --- Model Loading (Keep as is) --- tokenizer_splade = None model_splade = None tokenizer_splade_lexical = None model_splade_lexical = None tokenizer_splade_doc = None model_splade_doc = None # Load SPLADE v3 model (original) try: tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil") model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil") model_splade.eval() print("SPLADE-cocondenser-distil model loaded successfully!") except Exception as e: print(f"Error loading SPLADE-cocondenser-distil model: {e}") print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.") # Load SPLADE v3 Lexical model try: splade_lexical_model_name = "naver/splade-v3-lexical" tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name) model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name) model_splade_lexical.eval() print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!") except Exception as e: print(f"Error loading SPLADE-v3-Lexical model: {e}") print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).") # Load SPLADE v3 Doc model try: splade_doc_model_name = "naver/splade-v3-doc" tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name) model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name) model_splade_doc.eval() print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!") except Exception as e: print(f"Error loading SPLADE-v3-Doc model: {e}") print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).") # --- Global Variables for Document Index --- document_representations = {} # Stores {doc_id: sparse_vector} document_texts = {} # Stores {doc_id: doc_text} initial_doc_model_for_indexing = "SPLADE-cocondenser-distil" # Fixed for initial demo index # --- Load SciFact Corpus using ir_datasets --- def load_scifact_corpus_ir_datasets(): global document_texts print("Loading SciFact corpus using ir_datasets...") try: dataset = ir_datasets.load("scifact") for doc in tqdm(dataset.docs_iter(), desc="Loading SciFact documents"): document_texts[doc.doc_id] = doc.text.strip() print(f"Loaded {len(document_texts)} documents from SciFact corpus.") except Exception as e: print(f"Error loading SciFact corpus with ir_datasets: {e}") print("Please ensure 'ir_datasets' is installed and your internet connection is stable.") # --- Helper function for lexical mask (Keep as is) --- def create_lexical_bow_mask(input_ids, vocab_size, tokenizer): bow_mask = torch.zeros(vocab_size, device=input_ids.device) meaningful_token_ids = [] for token_id in input_ids.squeeze().tolist(): if token_id not in [ tokenizer.pad_token_id, tokenizer.cls_token_id, tokenizer.sep_token_id, tokenizer.mask_token_id, tokenizer.unk_token_id ]: meaningful_token_ids.append(token_id) if meaningful_token_ids: bow_mask[list(set(meaningful_token_ids))] = 1 return bow_mask.unsqueeze(0) # --- Core Representation Functions (Return Formatted Strings - for Explorer Tab) --- # These are your original functions, re-added. def get_splade_cocondenser_representation(text): if tokenizer_splade is None or model_splade is None: return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors." inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to(model_splade.device) for k, v in inputs.items()} with torch.no_grad(): output = model_splade(**inputs) if hasattr(output, 'logits'): splade_vector = torch.max( torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1 )[0].squeeze() else: return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found." indices = torch.nonzero(splade_vector).squeeze().cpu().tolist() if not isinstance(indices, list): indices = [indices] if indices else [] values = splade_vector[indices].cpu().tolist() token_weights = dict(zip(indices, values)) meaningful_tokens = {} for token_id, weight in token_weights.items(): decoded_token = tokenizer_splade.decode([token_id]) if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0: meaningful_tokens[decoded_token] = weight sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True) formatted_output = "SPLADE-cocondenser-distil Representation (Weighting and Expansion):\n" if not sorted_representation: formatted_output += "No significant terms found for this input.\n" else: for term, weight in sorted_representation: formatted_output += f"- **{term}**: {weight:.4f}\n" formatted_output += "\n--- Raw SPLADE Vector Info ---\n" formatted_output += f"Total non-zero terms in vector: {len(indices)}\n" formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n" return formatted_output def get_splade_lexical_representation(text): if tokenizer_splade_lexical is None or model_splade_lexical is None: return "SPLADE-v3-Lexical model is not loaded. Please check the console for loading errors." inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()} with torch.no_grad(): output = model_splade_lexical(**inputs) if hasattr(output, 'logits'): splade_vector = torch.max( torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1 )[0].squeeze() else: return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found." # Always apply lexical mask for this model's specific behavior vocab_size = tokenizer_splade_lexical.vocab_size bow_mask = create_lexical_bow_mask( inputs['input_ids'], vocab_size, tokenizer_splade_lexical ).squeeze() splade_vector = splade_vector * bow_mask indices = torch.nonzero(splade_vector).squeeze().cpu().tolist() if not isinstance(indices, list): indices = [indices] if indices else [] values = splade_vector[indices].cpu().tolist() token_weights = dict(zip(indices, values)) meaningful_tokens = {} for token_id, weight in token_weights.items(): decoded_token = tokenizer_splade_lexical.decode([token_id]) if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0: meaningful_tokens[decoded_token] = weight sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True) formatted_output = "SPLADE-v3-Lexical Representation (Weighting):\n" if not sorted_representation: formatted_output += "No significant terms found for this input.\n" else: for term, weight in sorted_representation: formatted_output += f"- **{term}**: {weight:.4f}\n" formatted_output += "\n--- Raw SPLADE Vector Info ---\n" formatted_output += f"Total non-zero terms in vector: {len(indices)}\n" formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n" return formatted_output def get_splade_doc_representation(text): if tokenizer_splade_doc is None or model_splade_doc is None: return "SPLADE-v3-Doc model is not loaded. Please check the console for loading errors." inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()} with torch.no_grad(): output = model_splade_doc(**inputs) if not hasattr(output, "logits"): return "SPLADE-v3-Doc model output structure not as expected. 'logits' not found." vocab_size = tokenizer_splade_doc.vocab_size binary_splade_vector = create_lexical_bow_mask( inputs['input_ids'], vocab_size, tokenizer_splade_doc ).squeeze() indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist() if not isinstance(indices, list): indices = [indices] if indices else [] values = [1.0] * len(indices) # All values are 1 for binary representation token_weights = dict(zip(indices, values)) meaningful_tokens = {} for token_id, weight in token_weights.items(): decoded_token = tokenizer_splade_doc.decode([token_id]) if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0: meaningful_tokens[decoded_token] = weight sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity formatted_output = "SPLADE-v3-Doc Representation (Binary):\n" if not sorted_representation: formatted_output += "No significant terms found for this input.\n" else: for i, (term, _) in enumerate(sorted_representation): if i >= 50: # Limit display for very long lists formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n" break formatted_output += f"- **{term}**\n" formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n" formatted_output += f"Total activated terms: {len(indices)}\n" formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_doc.vocab_size):.2%}\n" return formatted_output # --- Unified Prediction Function for the Explorer Tab --- def predict_representation_explorer(model_choice, text): if model_choice == "SPLADE-cocondenser-distil (weighting and expansion)": return get_splade_cocondenser_representation(text) elif model_choice == "SPLADE-v3-Lexical (weighting)": return get_splade_lexical_representation(text) elif model_choice == "SPLADE-v3-Doc (binary)": return get_splade_doc_representation(text) else: return "Please select a model." # --- Internal Core Representation Functions (Return Raw Vectors - for Retrieval Tab) --- # These are the ones ending with _internal, as previously defined. def get_splade_cocondenser_representation_internal(text, tokenizer, model): if tokenizer is None or model is None: return None inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to(model.device) for k, v in inputs.items()} with torch.no_grad(): output = model(**inputs) if hasattr(output, 'logits'): splade_vector = torch.max(torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1)[0].squeeze() return splade_vector else: print("Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found.") return None def get_splade_lexical_representation_internal(text, tokenizer, model): if tokenizer is None or model is None: return None inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to(model.device) for k, v in inputs.items()} with torch.no_grad(): output = model(**inputs) if hasattr(output, 'logits'): splade_vector = torch.max(torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1)[0].squeeze() vocab_size = tokenizer.vocab_size bow_mask = create_lexical_bow_mask(inputs['input_ids'], vocab_size, tokenizer).squeeze() splade_vector = splade_vector * bow_mask return splade_vector else: print("Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found.") return None def get_splade_doc_representation_internal(text, tokenizer, model): if tokenizer is None or model is None: return None inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to(model.device) for k, v in inputs.items()} vocab_size = tokenizer.vocab_size binary_splade_vector = create_lexical_bow_mask(inputs['input_ids'], vocab_size, tokenizer).squeeze() return binary_splade_vector # --- Document Indexing Function (for Retrieval Tab) --- def index_documents(doc_model_choice): global document_representations if document_representations: print("Documents already indexed. Skipping re-indexing.") return True tokenizer_to_use = None model_to_use = None representation_func_to_use = None if doc_model_choice == "SPLADE-cocondenser-distil": if tokenizer_splade is None or model_splade is None: print("SPLADE-cocondenser-distil model not loaded for indexing.") return False tokenizer_to_use = tokenizer_splade model_to_use = model_splade representation_func_to_use = get_splade_cocondenser_representation_internal elif doc_model_choice == "SPLADE-v3-Lexical": if tokenizer_splade_lexical is None or model_splade_lexical is None: print("SPLADE-v3-Lexical model not loaded for indexing.") return False tokenizer_to_use = tokenizer_splade_lexical model_to_use = model_splade_lexical representation_func_to_use = get_splade_lexical_representation_internal elif doc_model_choice == "SPLADE-v3-Doc": if tokenizer_splade_doc is None or model_splade_doc is None: print("SPLADE-v3-Doc model not loaded for indexing.") return False tokenizer_to_use = tokenizer_splade_doc model_to_use = model_splade_doc representation_func_to_use = get_splade_doc_representation_internal else: print(f"Invalid model choice for document indexing: {doc_model_choice}") return False print(f"Indexing documents using {doc_model_choice}...") doc_items = list(document_texts.items()) for doc_id, doc_text in tqdm(doc_items, desc="Indexing Documents"): sparse_vector = representation_func_to_use(doc_text, tokenizer_to_use, model_to_use) if sparse_vector is not None: document_representations[doc_id] = sparse_vector.cpu() else: print(f"Warning: Failed to get representation for doc_id {doc_id}") print(f"Finished indexing {len(document_representations)} documents.") return True # --- Retrieval Function (for Retrieval Tab) --- def retrieve_documents(query_text, query_model_choice, indexed_doc_model_name, top_k=5): if not document_representations: return "Document index is not loaded or empty. Please ensure documents are indexed.", [] query_vector = None query_tokenizer = None query_model = None if query_model_choice == "SPLADE-cocondenser-distil (weighting and expansion)": query_tokenizer = tokenizer_splade query_model = model_splade query_vector = get_splade_cocondenser_representation_internal(query_text, query_tokenizer, query_model) elif query_model_choice == "SPLADE-v3-Lexical (weighting)": query_tokenizer = tokenizer_splade_lexical query_model = model_splade_lexical query_vector = get_splade_lexical_representation_internal(query_text, query_tokenizer, query_model) elif query_model_choice == "SPLADE-v3-Doc (binary)": query_tokenizer = tokenizer_splade_doc query_model = model_splade_doc query_vector = get_splade_doc_representation_internal(query_text, query_tokenizer, query_model) else: return "Invalid query model choice.", [] if query_vector is None: return "Failed to get query representation. Check console for model loading errors.", [] query_vector = query_vector.cpu() scores = {} for doc_id, doc_vec in document_representations.items(): score = torch.dot(query_vector, doc_vec).item() scores[doc_id] = score sorted_scores = sorted(scores.items(), key=lambda item: item[1], reverse=True) top_results = sorted_scores[:top_k] formatted_output = f"Retrieval Results for Query: '{query_text}'\n" formatted_output += f"Using Query Model: **{query_model_choice}**\n" formatted_output += f"Documents Indexed with: **{indexed_doc_model_name}**\n\n" if not top_results: formatted_output += "No documents found or scored.\n" else: for i, (doc_id, score) in enumerate(top_results): doc_text = document_texts.get(doc_id, "Document text not available.") formatted_output += f"**{i+1}. Document ID: {doc_id}** (Score: {score:.4f})\n" formatted_output += f"> {doc_text[:300]}...\n\n" return formatted_output, top_results # --- Unified Prediction Function for Gradio (for Retrieval Tab) --- def predict_retrieval_gradio(query_text, query_model_choice, selected_doc_model_display_only): formatted_output, _ = retrieve_documents(query_text, query_model_choice, initial_doc_model_for_indexing, top_k=5) return formatted_output # --- Initial Load and Indexing Calls --- # This part runs once when the app starts. load_scifact_corpus_ir_datasets() # Or load_cranfield_corpus_ir_datasets() if you switch back if initial_doc_model_for_indexing == "SPLADE-cocondenser-distil" and model_splade is not None: index_documents(initial_doc_model_for_indexing) elif initial_doc_model_for_indexing == "SPLADE-v3-Lexical" and model_splade_lexical is not None: index_documents(initial_doc_model_for_indexing) elif initial_doc_model_for_indexing == "SPLADE-v3-Doc" and model_splade_doc is not None: index_documents(initial_doc_model_for_indexing) else: print(f"Skipping document indexing: Model '{initial_doc_model_for_indexing}' failed to load or is not a valid choice for indexing.") # --- Gradio Interface Setup with Tabs --- with gr.Blocks(title="SPLADE Demos") as demo: gr.Markdown("# 🌌 SPLADE Demos: Sparse Representation Explorer & Document Retrieval") gr.Markdown("Explore different SPLADE models and their sparse representation types, or perform document retrieval on a test collection.") with gr.Tabs(): with gr.TabItem("Sparse Representation Explorer"): gr.Markdown("### Explore Raw SPLADE Representations for Any Text") gr.Interface( fn=predict_representation_explorer, inputs=[ gr.Radio( [ "SPLADE-cocondenser-distil (weighting and expansion)", "SPLADE-v3-Lexical (weighting)", "SPLADE-v3-Doc (binary)" ], label="Choose Representation Model", value="SPLADE-cocondenser-distil (weighting and expansion)" ), gr.Textbox( lines=5, label="Enter your query or document text here:", placeholder="e.g., Why is Padua the nicest city in Italy?" ) ], outputs=gr.Markdown(), allow_flagging="never", # Don't show redundant title/description within the tab, as it's above # Setting live=True might be slow for complex models on every keystroke # live=True ) with gr.TabItem("Document Retrieval Demo"): gr.Markdown("### Retrieve Documents from SciFact Collection") gr.Interface( fn=predict_retrieval_gradio, inputs=[ gr.Textbox( lines=3, label="Enter your query text here:", placeholder="e.g., Does high-dose vitamin C cure cancer?" ), gr.Radio( [ "SPLADE-cocondenser-distil (weighting and expansion)", "SPLADE-v3-Lexical (weighting)", "SPLADE-v3-Doc (binary)" ], label="Choose Query Representation Model", value="SPLADE-cocondenser-distil (weighting and expansion)" ), gr.Radio( [ "SPLADE-cocondenser-distil", "SPLADE-v3-Lexical", "SPLADE-v3-Doc" ], label=f"Document Index Model (Pre-indexed with: {initial_doc_model_for_indexing})", value=initial_doc_model_for_indexing, interactive=False # This radio is fixed for simplicity ) ], outputs=gr.Markdown(), allow_flagging="never", # live=True # retrieval is too heavy for live ) demo.launch()