Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForMaskedLM | |
import torch | |
import numpy as np | |
from tqdm.auto import tqdm # Still useful for model loading progress if desired, but not strictly necessary for this simplified version | |
import os # Still useful for general purpose, but not explicitly used in this simplified version | |
# --- Model Loading --- | |
tokenizer_splade = None | |
model_splade = None | |
tokenizer_splade_lexical = None | |
model_splade_lexical = None | |
tokenizer_splade_doc = None | |
model_splade_doc = None | |
# Load SPLADE v3 model (original) | |
try: | |
tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil") | |
model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil") | |
model_splade.eval() | |
print("SPLADE-cocondenser-distil model loaded successfully!") | |
except Exception as e: | |
print(f"Error loading SPLADE-cocondenser-distil model: {e}") | |
print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.") | |
# Load SPLADE v3 Lexical model | |
try: | |
splade_lexical_model_name = "naver/splade-v3-lexical" | |
tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name) | |
model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name) | |
model_splade_lexical.eval() | |
print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!") | |
except Exception as e: | |
print(f"Error loading SPLADE-v3-Lexical model: {e}") | |
print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).") | |
# Load SPLADE v3 Doc model | |
try: | |
splade_doc_model_name = "naver/splade-v3-doc" | |
tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name) | |
model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name) | |
model_splade_doc.eval() | |
print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!") | |
except Exception as e: | |
print(f"Error loading SPLADE-v3-Doc model: {e}") | |
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).") | |
# --- Helper function for lexical mask (now handles batches, but used for single input here) --- | |
def create_lexical_bow_mask(input_ids_batch, vocab_size, tokenizer): | |
""" | |
Creates a batch of lexical BOW masks. | |
input_ids_batch: torch.Tensor of shape (batch_size, sequence_length) | |
vocab_size: int, size of the tokenizer vocabulary | |
tokenizer: the tokenizer object | |
Returns: torch.Tensor of shape (batch_size, vocab_size) | |
""" | |
batch_size = input_ids_batch.shape[0] | |
bow_masks = torch.zeros(batch_size, vocab_size, device=input_ids_batch.device) | |
for i in range(batch_size): | |
input_ids = input_ids_batch[i] # Get input_ids for the current item in the batch | |
meaningful_token_ids = [] | |
for token_id in input_ids.tolist(): | |
if token_id not in [ | |
tokenizer.pad_token_id, | |
tokenizer.cls_token_id, | |
tokenizer.sep_token_id, | |
tokenizer.mask_token_id, | |
tokenizer.unk_token_id | |
]: | |
meaningful_token_ids.append(token_id) | |
if meaningful_token_ids: | |
# Apply mask to the current row in the batch | |
bow_masks[i, list(set(meaningful_token_ids))] = 1 | |
return bow_masks | |
# --- Core Representation Functions (Return Formatted Strings - for Explorer Tab) --- | |
# These functions take single text input for the Explorer tab | |
def get_splade_cocondenser_representation(text): | |
if tokenizer_splade is None or model_splade is None: | |
return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors." | |
inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True) | |
inputs = {k: v.to(model_splade.device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
output = model_splade(**inputs) | |
if hasattr(output, 'logits'): | |
splade_vector = torch.max( | |
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), | |
dim=1 | |
)[0].squeeze() # Squeeze is fine here as it's a single input | |
else: | |
return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found." | |
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist() | |
if not isinstance(indices, list): | |
indices = [indices] if indices else [] | |
values = splade_vector[indices].cpu().tolist() | |
token_weights = dict(zip(indices, values)) | |
meaningful_tokens = {} | |
for token_id, weight in token_weights.items(): | |
decoded_token = tokenizer_splade.decode([token_id]) | |
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0: | |
meaningful_tokens[decoded_token] = weight | |
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True) | |
formatted_output = "SPLADE-cocondenser-distil Representation (Weighting and Expansion):\n" | |
if not sorted_representation: | |
formatted_output += "No significant terms found for this input.\n" | |
else: | |
for term, weight in sorted_representation: | |
formatted_output += f"- **{term}**: {weight:.4f}\n" | |
formatted_output += "\n--- Raw SPLADE Vector Info ---\n" | |
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n" | |
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n" | |
return formatted_output | |
def get_splade_lexical_representation(text): | |
if tokenizer_splade_lexical is None or model_splade_lexical is None: | |
return "SPLADE-v3-Lexical model is not loaded. Please check the console for loading errors." | |
inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True) | |
inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
output = model_splade_lexical(**inputs) | |
if hasattr(output, 'logits'): | |
splade_vector = torch.max( | |
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), | |
dim=1 | |
)[0].squeeze() # Squeeze is fine here | |
else: | |
return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found." | |
# Always apply lexical mask for this model's specific behavior | |
vocab_size = tokenizer_splade_lexical.vocab_size | |
# Call with unsqueezed input_ids for single sample processing | |
bow_mask = create_lexical_bow_mask( | |
inputs['input_ids'], vocab_size, tokenizer_splade_lexical | |
).squeeze() # Squeeze back for single output | |
splade_vector = splade_vector * bow_mask | |
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist() | |
if not isinstance(indices, list): | |
indices = [indices] if indices else [] | |
values = splade_vector[indices].cpu().tolist() | |
token_weights = dict(zip(indices, values)) | |
meaningful_tokens = {} | |
for token_id, weight in token_weights.items(): | |
decoded_token = tokenizer_splade_lexical.decode([token_id]) | |
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0: | |
meaningful_tokens[decoded_token] = weight | |
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True) | |
formatted_output = "SPLADE-v3-Lexical Representation (Weighting):\n" | |
if not sorted_representation: | |
formatted_output += "No significant terms found for this input.\n" | |
else: | |
for term, weight in sorted_representation: | |
formatted_output += f"- **{term}**: {weight:.4f}\n" | |
formatted_output += "\n--- Raw SPLADE Vector Info ---\n" | |
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n" | |
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n" | |
return formatted_output | |
def get_splade_doc_representation(text): | |
if tokenizer_splade_doc is None or model_splade_doc is None: | |
return "SPLADE-v3-Doc model is not loaded. Please check the console for loading errors." | |
inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True) | |
inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
output = model_splade_doc(**inputs) | |
if not hasattr(output, "logits"): | |
return "Model output structure not as expected. 'logits' not found." | |
vocab_size = tokenizer_splade_doc.vocab_size | |
# Call with unsqueezed input_ids for single sample processing | |
binary_splade_vector = create_lexical_bow_mask( | |
inputs['input_ids'], vocab_size, tokenizer_splade_doc | |
).squeeze() # Squeeze back for single output | |
indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist() | |
if not isinstance(indices, list): | |
indices = [indices] if indices else [] | |
values = [1.0] * len(indices) # All values are 1 for binary representation | |
token_weights = dict(zip(indices, values)) | |
meaningful_tokens = {} | |
for token_id, weight in token_weights.items(): | |
decoded_token = tokenizer_splade_doc.decode([token_id]) | |
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0: | |
meaningful_tokens[decoded_token] = weight | |
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity | |
formatted_output = "SPLADE-v3-Doc Representation (Binary):\n" | |
if not sorted_representation: | |
formatted_output += "No significant terms found for this input.\n" | |
else: | |
for i, (term, _) in enumerate(sorted_representation): | |
if i >= 50: # Limit display for very long lists | |
formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n" | |
break | |
formatted_output += f"- **{term}**\n" | |
formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n" | |
formatted_output += f"Total activated terms: {len(indices)}\n" | |
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_doc.vocab_size):.2%}\n" | |
return formatted_output | |
# --- Unified Prediction Function for the Explorer Tab --- | |
def predict_representation_explorer(model_choice, text): | |
if model_choice == "SPLADE-cocondenser-distil (weighting and expansion)": | |
return get_splade_cocondenser_representation(text) | |
elif model_choice == "SPLADE-v3-Lexical (weighting)": | |
return get_splade_lexical_representation(text) | |
elif model_choice == "SPLADE-v3-Doc (binary)": | |
return get_splade_doc_representation(text) | |
else: | |
return "Please select a model." | |
# --- Core Representation Functions (Return RAW TENSORS - for Dot Product Tab) --- | |
# These functions remain unchanged from the previous iteration, as they return the raw tensors. | |
def get_splade_cocondenser_vector(text): | |
if tokenizer_splade is None or model_splade is None: | |
return None | |
inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True) | |
inputs = {k: v.to(model_splade.device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
output = model_splade(**inputs) | |
if hasattr(output, 'logits'): | |
splade_vector = torch.max( | |
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), | |
dim=1 | |
)[0].squeeze() | |
return splade_vector | |
return None | |
def get_splade_lexical_vector(text): | |
if tokenizer_splade_lexical is None or model_splade_lexical is None: | |
return None | |
inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True) | |
inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
output = model_splade_lexical(**inputs) | |
if hasattr(output, 'logits'): | |
splade_vector = torch.max( | |
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), | |
dim=1 | |
)[0].squeeze() | |
vocab_size = tokenizer_splade_lexical.vocab_size | |
bow_mask = create_lexical_bow_mask( | |
inputs['input_ids'], vocab_size, tokenizer_splade_lexical | |
).squeeze() | |
splade_vector = splade_vector * bow_mask | |
return splade_vector | |
return None | |
def get_splade_doc_vector(text): | |
if tokenizer_splade_doc is None or model_splade_doc is None: | |
return None | |
inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True) | |
inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
output = model_splade_doc(**inputs) | |
if hasattr(output, "logits"): | |
vocab_size = tokenizer_splade_doc.vocab_size | |
binary_splade_vector = create_lexical_bow_mask( | |
inputs['input_ids'], vocab_size, tokenizer_splade_doc | |
).squeeze() | |
return binary_splade_vector | |
return None | |
# --- Function to get formatted representation from a raw vector and tokenizer --- | |
# This function remains unchanged as it's a generic formatter for any sparse vector. | |
def format_sparse_vector_output(splade_vector, tokenizer, is_binary=False): | |
if splade_vector is None: | |
return "Failed to generate vector." | |
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist() | |
if not isinstance(indices, list): | |
indices = [indices] if indices else [] | |
if is_binary: | |
values = [1.0] * len(indices) | |
else: | |
values = splade_vector[indices].cpu().tolist() | |
token_weights = dict(zip(indices, values)) | |
meaningful_tokens = {} | |
for token_id, weight in token_weights.items(): | |
decoded_token = tokenizer.decode([token_id]) | |
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0: | |
meaningful_tokens[decoded_token] = weight | |
if is_binary: | |
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for binary | |
else: | |
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True) | |
formatted_output = "" | |
if not sorted_representation: | |
formatted_output += "No significant terms found.\n" | |
else: | |
for i, (term, weight) in enumerate(sorted_representation): | |
if i >= 50 and is_binary: # Limit display for very long binary lists | |
formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n" | |
break | |
if is_binary: | |
formatted_output += f"- **{term}**\n" | |
else: | |
formatted_output += f"- **{term}**: {weight:.4f}\n" | |
formatted_output += f"\nTotal non-zero terms: {len(indices)}\n" | |
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer.vocab_size):.2%}\n" | |
return formatted_output | |
# --- NEW/MODIFIED: Helper to get the correct vector function, tokenizer, and binary flag --- | |
def get_model_assets(model_choice_str): | |
if model_choice_str == "SPLADE-cocondenser-distil (weighting and expansion)": | |
return get_splade_cocondenser_vector, tokenizer_splade, False, "SPLADE-cocondenser-distil (Weighting and Expansion)" | |
elif model_choice_str == "SPLADE-v3-Lexical (weighting)": | |
return get_splade_lexical_vector, tokenizer_splade_lexical, False, "SPLADE-v3-Lexical (Weighting)" | |
elif model_choice_str == "SPLADE-v3-Doc (binary)": | |
return get_splade_doc_vector, tokenizer_splade_doc, True, "SPLADE-v3-Doc (Binary)" | |
else: | |
return None, None, False, "Unknown Model" | |
# --- MODIFIED: Dot Product Calculation Function for the new tab --- | |
def calculate_dot_product_and_representations_independent(query_model_choice, doc_model_choice, query_text, doc_text): | |
query_vector_fn, query_tokenizer, query_is_binary, query_model_name_display = get_model_assets(query_model_choice) | |
doc_vector_fn, doc_tokenizer, doc_is_binary, doc_model_name_display = get_model_assets(doc_model_choice) | |
if query_vector_fn is None or doc_vector_fn is None: | |
return "Please select valid models for both query and document encoding.", "", "" | |
query_vector = query_vector_fn(query_text) | |
doc_vector = doc_vector_fn(doc_text) | |
if query_vector is None or doc_vector is None: | |
return "Failed to generate one or both vectors. Please check model loading and input text.", "", "" | |
# Calculate dot product | |
# Ensure both vectors are on CPU before dot product to avoid device mismatch issues | |
# and to ensure .item() works reliably for conversion to float. | |
dot_product = float(torch.dot(query_vector.cpu(), doc_vector.cpu()).item()) | |
# Format representations | |
query_rep_str = f"Query Representation ({query_model_name_display}):\n" | |
query_rep_str += format_sparse_vector_output(query_vector, query_tokenizer, query_is_binary) | |
doc_rep_str = f"Document Representation ({doc_model_name_display}):\n" | |
doc_rep_str += format_sparse_vector_output(doc_vector, doc_tokenizer, doc_is_binary) | |
# Combine output | |
full_output = f"### Dot Product Score: {dot_product:.6f}\n\n" | |
full_output += "---\n\n" | |
full_output += f"{query_rep_str}\n\n---\n\n{doc_rep_str}" | |
return full_output | |
# --- Gradio Interface Setup with Tabs --- | |
with gr.Blocks(title="SPLADE Demos") as demo: | |
gr.Markdown("# 🌌 Sparse Encoder Playground") # Updated title | |
gr.Markdown("Explore different SPLADE models and their sparse representation types, and calculate similarity between query and document representations.") # Updated description | |
with gr.Tabs(): | |
with gr.TabItem("Sparse Representation"): | |
gr.Markdown("### Produce a Sparse Representation of of an Input Text") | |
gr.Interface( | |
fn=predict_representation_explorer, | |
inputs=[ | |
gr.Radio( | |
[ | |
"MLM encoder (SPLADE-cocondenser-distil)", | |
"MLP encoder (SPLADE-v3-lexical)", | |
"Binary Encoder" | |
], | |
label="Choose Sparse Encoder", | |
value="SPLADE-cocondenser-distil (weighting and expansion)" | |
), | |
gr.Textbox( | |
lines=5, | |
label="Enter your query or document text here:", | |
placeholder="e.g., Why is Padua the nicest city in Italy?" | |
) | |
], | |
outputs=gr.Markdown(), | |
allow_flagging="never", | |
# live=True # Setting live=True might be slow for complex models on every keystroke | |
) | |
with gr.TabItem("Compare Encoders"): # NEW TAB | |
gr.Markdown("### Calculate Dot Product Similarity between Query and Document") | |
gr.Markdown("Select **independent** SPLADE models to encode your query and document, then see their sparse representations and their similarity score.") | |
# Define the common model choices for cleaner code | |
model_choices = [ | |
"SPLADE-cocondenser-distil (weighting and expansion)", | |
"SPLADE-v3-Lexical (weighting)", | |
"SPLADE-v3-Doc (binary)" | |
] | |
gr.Interface( | |
fn=calculate_dot_product_and_representations_independent, # MODIFIED FUNCTION NAME | |
inputs=[ | |
gr.Radio( | |
model_choices, | |
label="Choose Query Encoding Model", | |
value="SPLADE-cocondenser-distil (weighting and expansion)" # Default value | |
), | |
gr.Radio( | |
model_choices, | |
label="Choose Document Encoding Model", | |
value="SPLADE-cocondenser-distil (weighting and expansion)" # Default value | |
), | |
gr.Textbox( | |
lines=3, | |
label="Enter Query Text:", | |
placeholder="e.g., famous dishes of Padua" | |
), | |
gr.Textbox( | |
lines=5, | |
label="Enter Document Text:", | |
placeholder="e.g., Padua's cuisine is as famous as its legendary University." | |
) | |
], | |
outputs=gr.Markdown(), | |
allow_flagging="never" | |
) | |
demo.launch() |