TextLSRDemo / app.py
SiddharthAK's picture
added retrieval feature
01b1a90 verified
raw
history blame
21.7 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch
import numpy as np
from tqdm.auto import tqdm
import os
import ir_datasets
# --- Model Loading (Keep as is) ---
tokenizer_splade = None
model_splade = None
tokenizer_splade_lexical = None
model_splade_lexical = None
tokenizer_splade_doc = None
model_splade_doc = None
# Load SPLADE v3 model (original)
try:
tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade.eval()
print("SPLADE-cocondenser-distil model loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-cocondenser-distil model: {e}")
print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.")
# Load SPLADE v3 Lexical model
try:
splade_lexical_model_name = "naver/splade-v3-lexical"
tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
model_splade_lexical.eval()
print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Lexical model: {e}")
print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# Load SPLADE v3 Doc model
try:
splade_doc_model_name = "naver/splade-v3-doc"
tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name)
model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name)
model_splade_doc.eval()
print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Doc model: {e}")
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# --- Global Variables for Document Index ---
document_representations = {} # Stores {doc_id: sparse_vector}
document_texts = {} # Stores {doc_id: doc_text}
initial_doc_model_for_indexing = "SPLADE-cocondenser-distil" # Fixed for initial demo index
# --- Load SciFact Corpus using ir_datasets ---
def load_scifact_corpus_ir_datasets():
global document_texts
print("Loading SciFact corpus using ir_datasets...")
try:
dataset = ir_datasets.load("scifact")
for doc in tqdm(dataset.docs_iter(), desc="Loading SciFact documents"):
document_texts[doc.doc_id] = doc.text.strip()
print(f"Loaded {len(document_texts)} documents from SciFact corpus.")
except Exception as e:
print(f"Error loading SciFact corpus with ir_datasets: {e}")
print("Please ensure 'ir_datasets' is installed and your internet connection is stable.")
# --- Helper function for lexical mask (Keep as is) ---
def create_lexical_bow_mask(input_ids, vocab_size, tokenizer):
bow_mask = torch.zeros(vocab_size, device=input_ids.device)
meaningful_token_ids = []
for token_id in input_ids.squeeze().tolist():
if token_id not in [
tokenizer.pad_token_id,
tokenizer.cls_token_id,
tokenizer.sep_token_id,
tokenizer.mask_token_id,
tokenizer.unk_token_id
]:
meaningful_token_ids.append(token_id)
if meaningful_token_ids:
bow_mask[list(set(meaningful_token_ids))] = 1
return bow_mask.unsqueeze(0)
# --- Core Representation Functions (Return Formatted Strings - for Explorer Tab) ---
# These are your original functions, re-added.
def get_splade_cocondenser_representation(text):
if tokenizer_splade is None or model_splade is None:
return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze()
else:
return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found."
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE-cocondenser-distil Representation (Weighting and Expansion):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n"
return formatted_output
def get_splade_lexical_representation(text):
if tokenizer_splade_lexical is None or model_splade_lexical is None:
return "SPLADE-v3-Lexical model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_lexical(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze()
else:
return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found."
# Always apply lexical mask for this model's specific behavior
vocab_size = tokenizer_splade_lexical.vocab_size
bow_mask = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
).squeeze()
splade_vector = splade_vector * bow_mask
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_lexical.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE-v3-Lexical Representation (Weighting):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n"
return formatted_output
def get_splade_doc_representation(text):
if tokenizer_splade_doc is None or model_splade_doc is None:
return "SPLADE-v3-Doc model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_doc(**inputs)
if not hasattr(output, "logits"):
return "SPLADE-v3-Doc model output structure not as expected. 'logits' not found."
vocab_size = tokenizer_splade_doc.vocab_size
binary_splade_vector = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_doc
).squeeze()
indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = [1.0] * len(indices) # All values are 1 for binary representation
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_doc.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity
formatted_output = "SPLADE-v3-Doc Representation (Binary):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for i, (term, _) in enumerate(sorted_representation):
if i >= 50: # Limit display for very long lists
formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n"
break
formatted_output += f"- **{term}**\n"
formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n"
formatted_output += f"Total activated terms: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_doc.vocab_size):.2%}\n"
return formatted_output
# --- Unified Prediction Function for the Explorer Tab ---
def predict_representation_explorer(model_choice, text):
if model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
return get_splade_cocondenser_representation(text)
elif model_choice == "SPLADE-v3-Lexical (weighting)":
return get_splade_lexical_representation(text)
elif model_choice == "SPLADE-v3-Doc (binary)":
return get_splade_doc_representation(text)
else:
return "Please select a model."
# --- Internal Core Representation Functions (Return Raw Vectors - for Retrieval Tab) ---
# These are the ones ending with _internal, as previously defined.
def get_splade_cocondenser_representation_internal(text, tokenizer, model):
if tokenizer is None or model is None: return None
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad(): output = model(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1)[0].squeeze()
return splade_vector
else:
print("Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found.")
return None
def get_splade_lexical_representation_internal(text, tokenizer, model):
if tokenizer is None or model is None: return None
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad(): output = model(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1)[0].squeeze()
vocab_size = tokenizer.vocab_size
bow_mask = create_lexical_bow_mask(inputs['input_ids'], vocab_size, tokenizer).squeeze()
splade_vector = splade_vector * bow_mask
return splade_vector
else:
print("Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found.")
return None
def get_splade_doc_representation_internal(text, tokenizer, model):
if tokenizer is None or model is None: return None
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
vocab_size = tokenizer.vocab_size
binary_splade_vector = create_lexical_bow_mask(inputs['input_ids'], vocab_size, tokenizer).squeeze()
return binary_splade_vector
# --- Document Indexing Function (for Retrieval Tab) ---
def index_documents(doc_model_choice):
global document_representations
if document_representations:
print("Documents already indexed. Skipping re-indexing.")
return True
tokenizer_to_use = None
model_to_use = None
representation_func_to_use = None
if doc_model_choice == "SPLADE-cocondenser-distil":
if tokenizer_splade is None or model_splade is None:
print("SPLADE-cocondenser-distil model not loaded for indexing.")
return False
tokenizer_to_use = tokenizer_splade
model_to_use = model_splade
representation_func_to_use = get_splade_cocondenser_representation_internal
elif doc_model_choice == "SPLADE-v3-Lexical":
if tokenizer_splade_lexical is None or model_splade_lexical is None:
print("SPLADE-v3-Lexical model not loaded for indexing.")
return False
tokenizer_to_use = tokenizer_splade_lexical
model_to_use = model_splade_lexical
representation_func_to_use = get_splade_lexical_representation_internal
elif doc_model_choice == "SPLADE-v3-Doc":
if tokenizer_splade_doc is None or model_splade_doc is None:
print("SPLADE-v3-Doc model not loaded for indexing.")
return False
tokenizer_to_use = tokenizer_splade_doc
model_to_use = model_splade_doc
representation_func_to_use = get_splade_doc_representation_internal
else:
print(f"Invalid model choice for document indexing: {doc_model_choice}")
return False
print(f"Indexing documents using {doc_model_choice}...")
doc_items = list(document_texts.items())
for doc_id, doc_text in tqdm(doc_items, desc="Indexing Documents"):
sparse_vector = representation_func_to_use(doc_text, tokenizer_to_use, model_to_use)
if sparse_vector is not None:
document_representations[doc_id] = sparse_vector.cpu()
else:
print(f"Warning: Failed to get representation for doc_id {doc_id}")
print(f"Finished indexing {len(document_representations)} documents.")
return True
# --- Retrieval Function (for Retrieval Tab) ---
def retrieve_documents(query_text, query_model_choice, indexed_doc_model_name, top_k=5):
if not document_representations:
return "Document index is not loaded or empty. Please ensure documents are indexed.", []
query_vector = None
query_tokenizer = None
query_model = None
if query_model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
query_tokenizer = tokenizer_splade
query_model = model_splade
query_vector = get_splade_cocondenser_representation_internal(query_text, query_tokenizer, query_model)
elif query_model_choice == "SPLADE-v3-Lexical (weighting)":
query_tokenizer = tokenizer_splade_lexical
query_model = model_splade_lexical
query_vector = get_splade_lexical_representation_internal(query_text, query_tokenizer, query_model)
elif query_model_choice == "SPLADE-v3-Doc (binary)":
query_tokenizer = tokenizer_splade_doc
query_model = model_splade_doc
query_vector = get_splade_doc_representation_internal(query_text, query_tokenizer, query_model)
else:
return "Invalid query model choice.", []
if query_vector is None:
return "Failed to get query representation. Check console for model loading errors.", []
query_vector = query_vector.cpu()
scores = {}
for doc_id, doc_vec in document_representations.items():
score = torch.dot(query_vector, doc_vec).item()
scores[doc_id] = score
sorted_scores = sorted(scores.items(), key=lambda item: item[1], reverse=True)
top_results = sorted_scores[:top_k]
formatted_output = f"Retrieval Results for Query: '{query_text}'\n"
formatted_output += f"Using Query Model: **{query_model_choice}**\n"
formatted_output += f"Documents Indexed with: **{indexed_doc_model_name}**\n\n"
if not top_results:
formatted_output += "No documents found or scored.\n"
else:
for i, (doc_id, score) in enumerate(top_results):
doc_text = document_texts.get(doc_id, "Document text not available.")
formatted_output += f"**{i+1}. Document ID: {doc_id}** (Score: {score:.4f})\n"
formatted_output += f"> {doc_text[:300]}...\n\n"
return formatted_output, top_results
# --- Unified Prediction Function for Gradio (for Retrieval Tab) ---
def predict_retrieval_gradio(query_text, query_model_choice, selected_doc_model_display_only):
formatted_output, _ = retrieve_documents(query_text, query_model_choice, initial_doc_model_for_indexing, top_k=5)
return formatted_output
# --- Initial Load and Indexing Calls ---
# This part runs once when the app starts.
load_scifact_corpus_ir_datasets() # Or load_cranfield_corpus_ir_datasets() if you switch back
if initial_doc_model_for_indexing == "SPLADE-cocondenser-distil" and model_splade is not None:
index_documents(initial_doc_model_for_indexing)
elif initial_doc_model_for_indexing == "SPLADE-v3-Lexical" and model_splade_lexical is not None:
index_documents(initial_doc_model_for_indexing)
elif initial_doc_model_for_indexing == "SPLADE-v3-Doc" and model_splade_doc is not None:
index_documents(initial_doc_model_for_indexing)
else:
print(f"Skipping document indexing: Model '{initial_doc_model_for_indexing}' failed to load or is not a valid choice for indexing.")
# --- Gradio Interface Setup with Tabs ---
with gr.Blocks(title="SPLADE Demos") as demo:
gr.Markdown("# 🌌 SPLADE Demos: Sparse Representation Explorer & Document Retrieval")
gr.Markdown("Explore different SPLADE models and their sparse representation types, or perform document retrieval on a test collection.")
with gr.Tabs():
with gr.TabItem("Sparse Representation Explorer"):
gr.Markdown("### Explore Raw SPLADE Representations for Any Text")
gr.Interface(
fn=predict_representation_explorer,
inputs=[
gr.Radio(
[
"SPLADE-cocondenser-distil (weighting and expansion)",
"SPLADE-v3-Lexical (weighting)",
"SPLADE-v3-Doc (binary)"
],
label="Choose Representation Model",
value="SPLADE-cocondenser-distil (weighting and expansion)"
),
gr.Textbox(
lines=5,
label="Enter your query or document text here:",
placeholder="e.g., Why is Padua the nicest city in Italy?"
)
],
outputs=gr.Markdown(),
allow_flagging="never",
# Don't show redundant title/description within the tab, as it's above
# Setting live=True might be slow for complex models on every keystroke
# live=True
)
with gr.TabItem("Document Retrieval Demo"):
gr.Markdown("### Retrieve Documents from SciFact Collection")
gr.Interface(
fn=predict_retrieval_gradio,
inputs=[
gr.Textbox(
lines=3,
label="Enter your query text here:",
placeholder="e.g., Does high-dose vitamin C cure cancer?"
),
gr.Radio(
[
"SPLADE-cocondenser-distil (weighting and expansion)",
"SPLADE-v3-Lexical (weighting)",
"SPLADE-v3-Doc (binary)"
],
label="Choose Query Representation Model",
value="SPLADE-cocondenser-distil (weighting and expansion)"
),
gr.Radio(
[
"SPLADE-cocondenser-distil",
"SPLADE-v3-Lexical",
"SPLADE-v3-Doc"
],
label=f"Document Index Model (Pre-indexed with: {initial_doc_model_for_indexing})",
value=initial_doc_model_for_indexing,
interactive=False # This radio is fixed for simplicity
)
],
outputs=gr.Markdown(),
allow_flagging="never",
# live=True # retrieval is too heavy for live
)
demo.launch()