Spaces:
Running
Running
| import uuid | |
| from typing import Any, Coroutine, Optional, Union | |
| from openai import AsyncAzureOpenAI, AzureOpenAI | |
| from pydantic import BaseModel | |
| from litellm.litellm_core_utils.audio_utils.utils import get_audio_file_name | |
| from litellm.types.utils import FileTypes | |
| from litellm.utils import ( | |
| TranscriptionResponse, | |
| convert_to_model_response_object, | |
| extract_duration_from_srt_or_vtt, | |
| ) | |
| from .azure import AzureChatCompletion | |
| from .common_utils import AzureOpenAIError | |
| class AzureAudioTranscription(AzureChatCompletion): | |
| def audio_transcriptions( | |
| self, | |
| model: str, | |
| audio_file: FileTypes, | |
| optional_params: dict, | |
| logging_obj: Any, | |
| model_response: TranscriptionResponse, | |
| timeout: float, | |
| max_retries: int, | |
| api_key: Optional[str] = None, | |
| api_base: Optional[str] = None, | |
| api_version: Optional[str] = None, | |
| client=None, | |
| azure_ad_token: Optional[str] = None, | |
| atranscription: bool = False, | |
| litellm_params: Optional[dict] = None, | |
| ) -> Union[TranscriptionResponse, Coroutine[Any, Any, TranscriptionResponse]]: | |
| data = {"model": model, "file": audio_file, **optional_params} | |
| if atranscription is True: | |
| return self.async_audio_transcriptions( | |
| audio_file=audio_file, | |
| data=data, | |
| model_response=model_response, | |
| timeout=timeout, | |
| api_key=api_key, | |
| api_base=api_base, | |
| client=client, | |
| max_retries=max_retries, | |
| logging_obj=logging_obj, | |
| model=model, | |
| litellm_params=litellm_params, | |
| ) | |
| azure_client = self.get_azure_openai_client( | |
| api_version=api_version, | |
| api_base=api_base, | |
| api_key=api_key, | |
| model=model, | |
| _is_async=False, | |
| client=client, | |
| litellm_params=litellm_params, | |
| ) | |
| if not isinstance(azure_client, AzureOpenAI): | |
| raise AzureOpenAIError( | |
| status_code=500, | |
| message="azure_client is not an instance of AzureOpenAI", | |
| ) | |
| ## LOGGING | |
| logging_obj.pre_call( | |
| input=f"audio_file_{uuid.uuid4()}", | |
| api_key=azure_client.api_key, | |
| additional_args={ | |
| "headers": {"Authorization": f"Bearer {azure_client.api_key}"}, | |
| "api_base": azure_client._base_url._uri_reference, | |
| "atranscription": True, | |
| "complete_input_dict": data, | |
| }, | |
| ) | |
| response = azure_client.audio.transcriptions.create( | |
| **data, timeout=timeout # type: ignore | |
| ) | |
| if isinstance(response, BaseModel): | |
| stringified_response = response.model_dump() | |
| else: | |
| stringified_response = TranscriptionResponse(text=response).model_dump() | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=get_audio_file_name(audio_file), | |
| api_key=api_key, | |
| additional_args={"complete_input_dict": data}, | |
| original_response=stringified_response, | |
| ) | |
| hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"} | |
| final_response: TranscriptionResponse = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore | |
| return final_response | |
| async def async_audio_transcriptions( | |
| self, | |
| audio_file: FileTypes, | |
| model: str, | |
| data: dict, | |
| model_response: TranscriptionResponse, | |
| timeout: float, | |
| logging_obj: Any, | |
| api_version: Optional[str] = None, | |
| api_key: Optional[str] = None, | |
| api_base: Optional[str] = None, | |
| client=None, | |
| max_retries=None, | |
| litellm_params: Optional[dict] = None, | |
| ) -> TranscriptionResponse: | |
| response = None | |
| try: | |
| async_azure_client = self.get_azure_openai_client( | |
| api_version=api_version, | |
| api_base=api_base, | |
| api_key=api_key, | |
| model=model, | |
| _is_async=True, | |
| client=client, | |
| litellm_params=litellm_params, | |
| ) | |
| if not isinstance(async_azure_client, AsyncAzureOpenAI): | |
| raise AzureOpenAIError( | |
| status_code=500, | |
| message="async_azure_client is not an instance of AsyncAzureOpenAI", | |
| ) | |
| ## LOGGING | |
| logging_obj.pre_call( | |
| input=f"audio_file_{uuid.uuid4()}", | |
| api_key=async_azure_client.api_key, | |
| additional_args={ | |
| "headers": { | |
| "Authorization": f"Bearer {async_azure_client.api_key}" | |
| }, | |
| "api_base": async_azure_client._base_url._uri_reference, | |
| "atranscription": True, | |
| "complete_input_dict": data, | |
| }, | |
| ) | |
| raw_response = ( | |
| await async_azure_client.audio.transcriptions.with_raw_response.create( | |
| **data, timeout=timeout | |
| ) | |
| ) # type: ignore | |
| headers = dict(raw_response.headers) | |
| response = raw_response.parse() | |
| if isinstance(response, BaseModel): | |
| stringified_response = response.model_dump() | |
| else: | |
| stringified_response = TranscriptionResponse(text=response).model_dump() | |
| duration = extract_duration_from_srt_or_vtt(response) | |
| stringified_response["duration"] = duration | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=get_audio_file_name(audio_file), | |
| api_key=api_key, | |
| additional_args={ | |
| "headers": { | |
| "Authorization": f"Bearer {async_azure_client.api_key}" | |
| }, | |
| "api_base": async_azure_client._base_url._uri_reference, | |
| "atranscription": True, | |
| "complete_input_dict": data, | |
| }, | |
| original_response=stringified_response, | |
| ) | |
| hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"} | |
| response = convert_to_model_response_object( | |
| _response_headers=headers, | |
| response_object=stringified_response, | |
| model_response_object=model_response, | |
| hidden_params=hidden_params, | |
| response_type="audio_transcription", | |
| ) | |
| if not isinstance(response, TranscriptionResponse): | |
| raise AzureOpenAIError( | |
| status_code=500, | |
| message="response is not an instance of TranscriptionResponse", | |
| ) | |
| return response | |
| except Exception as e: | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=input, | |
| api_key=api_key, | |
| original_response=str(e), | |
| ) | |
| raise e | |