File size: 1,718 Bytes
439fcd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a8772
 
439fcd4
 
 
 
 
 
c7a8772
 
439fcd4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
from transformers import AutoTokenizer, EncoderDecoderModel

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name = "Shuu12121/CodeEncoderDecodeerModel-Ghost"

# Tokenizerの読み込み
encoder_tokenizer = AutoTokenizer.from_pretrained(f"{model_name}/encoder_tokenizer")
decoder_tokenizer = AutoTokenizer.from_pretrained(f"{model_name}/decoder_tokenizer")

if decoder_tokenizer.pad_token is None:
    decoder_tokenizer.pad_token = decoder_tokenizer.eos_token

model = EncoderDecoderModel.from_pretrained(model_name).to(device)
model.eval()

def generate_docstring(code: str) -> str:
    inputs = encoder_tokenizer(
        code,
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=2048
    ).to(device)

    with torch.no_grad():
        output_ids = model.generate(
            input_ids=inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_length=256,
            num_beams=5,
            early_stopping=True,
            decoder_start_token_id=model.config.decoder_start_token_id,
            eos_token_id=model.config.eos_token_id,
            pad_token_id=model.config.pad_token_id,
            no_repeat_ngram_size=2
        )

    return decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True)

# Gradio UI
import gradio as gr

iface = gr.Interface(
    fn=generate_docstring,
    inputs=gr.Textbox(label="Code Snippet", lines=10, placeholder="Paste your function here..."),
    outputs=gr.Textbox(label="Generated Docstring"),
    title="Code-to-Docstring Generator",
    description="This demo uses a custom encoder-decoder model to generate docstrings from code."
)

iface.launch()