File size: 2,836 Bytes
efb129d
1abd701
efb129d
 
 
 
 
1abd701
efb129d
 
 
1abd701
efb129d
066cc0b
1abd701
182358f
00bd88d
efb129d
182358f
00bd88d
 
 
 
 
 
e1b2b43
00bd88d
 
 
 
 
1abd701
efb129d
182358f
00bd88d
1abd701
00bd88d
 
1abd701
efb129d
00bd88d
1abd701
6396265
 
 
 
 
 
 
 
182358f
6396265
 
efb129d
6396265
efb129d
 
 
6396265
 
 
 
 
182358f
 
efb129d
 
182358f
efb129d
90c6104
182358f
1abd701
 
 
182358f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# CodeSearch-ModernBERT-Owl Demo Space using CodeSearchNet Dataset
import gradio as gr
import torch
import random
from sentence_transformers import SentenceTransformer, util
from datasets import load_dataset
from spaces import GPU

# --- Load model ---
model = SentenceTransformer("Shuu12121/CodeSearch-ModernBERT-Owl")
model.eval()

# --- Load CodeSearchNet dataset (test split only) ---
dataset = load_dataset("code_x_glue_tc_nl_code_search_adv", trust_remote_code=True, split="test")

# --- Query & Candidate Generator ---
def get_query_and_candidates(seed: int = 42):
    random.seed(seed)
    idx = random.randint(0, len(dataset) - 1)
    query = dataset[idx]
    correct_code = query["code"]
    doc_str = query["docstring"]

    # 正例 + ランダム負例(正例を除く)
    candidate_pool = [example for i, example in enumerate(dataset) if i != idx]
    negatives = random.sample(candidate_pool, k=99)  # 9件の負例
    candidates = [correct_code] + [neg["code"] for neg in negatives]
    random.shuffle(candidates)

    return doc_str, correct_code, candidates


@GPU
def code_search_demo(seed: int):
    doc_str, correct_code, candidates = get_query_and_candidates(seed)

    query_emb = model.encode(doc_str, convert_to_tensor=True)
    candidate_embeddings = model.encode(candidates, convert_to_tensor=True)

    cos_scores = util.cos_sim(query_emb, candidate_embeddings)[0]
    results = sorted(zip(candidates, cos_scores), key=lambda x: x[1], reverse=True)

    top_k = 10
    correct_in_top_k = any(code.strip() == correct_code.strip() for code, _ in results[:top_k])
    mrr = 0.0
    for rank, (code, _) in enumerate(results, start=1):
        if code.strip() == correct_code.strip():
            mrr = 1.0 / rank
            break

    output = f"### 🔍 Query Docstring\n\n{doc_str}\n\n"
    output += f"**✅ 正解は Top-{top_k} に含まれているか?**: {'🟢 Yes' if correct_in_top_k else '🔴 No'}\n\n"
    output += f"**📈 MRR@{top_k}**: {mrr:.4f}\n\n"
    output += "## 🏆 Top Matches:\n"

    medals = ["🥇", "🥈", "🥉"] + [f"#{i+1}" for i in range(3, len(results))]
    for i, (code, score) in enumerate(results):
        label = medals[i] if i < len(medals) else f"#{i+1}"
        is_correct = "✅" if code.strip() == correct_code.strip() else ""
        output += f"\n**{label}** - Similarity: {score.item():.4f} {is_correct}\n\n```python\n{code.strip()[:1000]}\n```\n"

    return output


# --- Gradio UI ---
demo = gr.Interface(
    fn=code_search_demo,
    inputs=gr.Slider(0, 100000, value=42, step=1, label="Random Seed"),
    outputs=gr.Markdown(label="Search Result"),
    title="🔎 CodeSearch-ModernBERT-Owl🦉 Demo",
    description="docstring から類似 Python 関数を検索(CodeXGlue + ModernBERT-Owl)"
)

if __name__ == "__main__":
    demo.launch()