File size: 2,920 Bytes
efb129d 1abd701 efb129d 1abd701 efb129d 1abd701 efb129d 066cc0b 1abd701 182358f efb129d 182358f 1abd701 efb129d 182358f efb129d 1abd701 6396265 182358f 6396265 182358f 1abd701 efb129d 182358f 1abd701 6396265 182358f 6396265 efb129d 6396265 efb129d 6396265 182358f efb129d 1abd701 182358f efb129d 182358f efb129d 182358f 1abd701 182358f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# CodeSearch-ModernBERT-Owl Demo Space using CodeSearchNet Dataset
import gradio as gr
import torch
import random
from sentence_transformers import SentenceTransformer, util
from datasets import load_dataset
from spaces import GPU
# --- Load model ---
model = SentenceTransformer("Shuu12121/CodeSearch-ModernBERT-Owl")
model.eval()
# --- Load CodeSearchNet dataset (test split only) ---
dataset = load_dataset("code_x_glue_tc_nl_code_search_adv", trust_remote_code=True, split="test")
# --- Query & Candidate Generator ---
def get_random_query(seed: int = 42):
random.seed(seed)
idx = random.randint(0, len(dataset) - 1)
sample = dataset[idx]
return sample["code"], sample["docstring"]
@GPU
def code_search_demo(seed: int):
code_str, doc_str = get_random_query(seed)
query_emb = model.encode(doc_str, convert_to_tensor=True)
# ランダムに10件取得し、正解 index を含めるようにする(※現実には全件評価がおすすめ)
candidates = dataset.shuffle(seed=seed).select(range(10))
correct_label = dataset[seed]["label"] # 正解 index(全体に対する)
correct_code = dataset[correct_label]["code"]
candidate_codes = [c["code"] for c in candidates]
candidate_embeddings = model.encode(candidate_codes, convert_to_tensor=True)
cos_scores = util.cos_sim(query_emb, candidate_embeddings)[0]
results = sorted(zip(candidate_codes, cos_scores), key=lambda x: x[1], reverse=True)
# 正解コードが Top-K に含まれているかを確認
top_k = 10
correct_in_top_k = any(code.strip() == correct_code.strip() for code, _ in results[:top_k])
mrr = 0.0
for rank, (code, _) in enumerate(results, start=1):
if code.strip() == correct_code.strip():
mrr = 1.0 / rank
break
# 出力構築
output = f"### 🔍 Query Docstring\n\n{doc_str}\n\n"
output += f"**✅ 正解は Top-{top_k} に含まれているか?**: {'🟢 Yes' if correct_in_top_k else '🔴 No'}\n\n"
output += f"**📈 MRR@{top_k}**: {mrr:.4f}\n\n"
output += "## 🏆 Top Matches:\n"
medals = ["🥇", "🥈", "🥉"] + [f"#{i+1}" for i in range(3, len(results))]
for i, (code, score) in enumerate(results):
label = medals[i] if i < len(medals) else f"#{i+1}"
is_correct = "✅" if code.strip() == correct_code.strip() else ""
output += f"\n**{label}** - Similarity: {score.item():.4f} {is_correct}\n\n```python\n{code.strip()[:1000]}\n```\n"
return output
return output
# --- Gradio UI ---
demo = gr.Interface(
fn=code_search_demo,
inputs=gr.Slider(0, 100000, value=42, step=1, label="Random Seed"),
outputs=gr.Markdown(label="Search Result"),
title="🔎 CodeSearch-ModernBERT-Owl Demo",
description="docstring から類似 Python 関数を検索(CodeXGlue + ModernBERT-Owl)"
)
if __name__ == "__main__":
demo.launch()
|