Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,30 +3,42 @@ from transformers import pipeline
|
|
3 |
import re
|
4 |
import os
|
5 |
from huggingface_hub import login
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
login(token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"))
|
9 |
|
10 |
-
#
|
11 |
summarizer = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
16 |
def compare_keywords(resume_text, job_desc):
|
17 |
-
resume_words =
|
18 |
-
job_words =
|
19 |
matched = resume_words & job_words
|
20 |
missing = job_words - resume_words
|
21 |
return matched, missing
|
22 |
|
|
|
23 |
def highlight_keywords(resume_text, matched):
|
24 |
highlighted = resume_text
|
25 |
for word in sorted(matched, key=len, reverse=True):
|
26 |
highlighted = re.sub(rf"\b({re.escape(word)})\b", r"**\1**", highlighted, flags=re.IGNORECASE)
|
27 |
return highlighted
|
28 |
|
29 |
-
#
|
30 |
def extract_missing_keywords_with_llm(job_desc, resume_text):
|
31 |
prompt = f"""
|
32 |
Given the following job description and resume, list the important skills, tools, and concepts from the job description that are missing or weakly represented in the resume.
|
@@ -39,7 +51,7 @@ Only list the missing keywords as bullet points.
|
|
39 |
result = summarizer(prompt, max_new_tokens=300, do_sample=True)[0]
|
40 |
return result.get('generated_text', result.get('summary_text', str(result))).strip()
|
41 |
|
42 |
-
#
|
43 |
def build_dynamic_prompt(job_desc, resume_text, analyze_with_jd):
|
44 |
prompt = f"""
|
45 |
Analyze the resume below and organize it into meaningful categories (e.g., Skills, Education, Work Experience, etc.).
|
@@ -52,7 +64,7 @@ Return structured Markdown with headers for each section and improvement suggest
|
|
52 |
"""
|
53 |
return prompt
|
54 |
|
55 |
-
#
|
56 |
def analyze_resume(job_desc, resume_text, analyze_with_jd):
|
57 |
if not resume_text.strip():
|
58 |
return "β οΈ Please paste your resume text."
|
@@ -62,16 +74,35 @@ def analyze_resume(job_desc, resume_text, analyze_with_jd):
|
|
62 |
try:
|
63 |
result = summarizer(user_prompt, max_new_tokens=512, do_sample=True)[0]
|
64 |
response_text = result.get('generated_text', result.get('summary_text', str(result))).strip()
|
|
|
65 |
if analyze_with_jd and job_desc:
|
66 |
matched, missing = compare_keywords(resume_text, job_desc)
|
67 |
highlighted_resume = highlight_keywords(resume_text, matched)
|
68 |
llm_missing_keywords = extract_missing_keywords_with_llm(job_desc, resume_text)
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
return response_text
|
71 |
except Exception as e:
|
72 |
return f"β Error: {str(e)}"
|
73 |
|
74 |
-
#
|
75 |
def create_ui():
|
76 |
with gr.Blocks() as demo:
|
77 |
with gr.Row():
|
|
|
3 |
import re
|
4 |
import os
|
5 |
from huggingface_hub import login
|
6 |
+
import spacy
|
7 |
+
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
|
8 |
|
9 |
+
# Authenticate with Hugging Face
|
10 |
login(token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"))
|
11 |
|
12 |
+
# Load summarization model
|
13 |
summarizer = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
|
14 |
|
15 |
+
# Load SpaCy English model
|
16 |
+
nlp = spacy.load("en_core_web_sm")
|
17 |
+
|
18 |
+
# π Use SpaCy to extract nouns and proper nouns (contextually relevant keywords)
|
19 |
+
def extract_relevant_keywords(text):
|
20 |
+
doc = nlp(text.lower())
|
21 |
+
return set(
|
22 |
+
token.text for token in doc
|
23 |
+
if token.pos_ in {"NOUN", "PROPN"} and not token.is_stop and len(token.text) > 2
|
24 |
+
)
|
25 |
|
26 |
+
# Compare keywords with semantic filtering
|
27 |
def compare_keywords(resume_text, job_desc):
|
28 |
+
resume_words = extract_relevant_keywords(resume_text)
|
29 |
+
job_words = extract_relevant_keywords(job_desc)
|
30 |
matched = resume_words & job_words
|
31 |
missing = job_words - resume_words
|
32 |
return matched, missing
|
33 |
|
34 |
+
# Highlight matched keywords in the resume
|
35 |
def highlight_keywords(resume_text, matched):
|
36 |
highlighted = resume_text
|
37 |
for word in sorted(matched, key=len, reverse=True):
|
38 |
highlighted = re.sub(rf"\b({re.escape(word)})\b", r"**\1**", highlighted, flags=re.IGNORECASE)
|
39 |
return highlighted
|
40 |
|
41 |
+
# LLM-based missing keyword extraction
|
42 |
def extract_missing_keywords_with_llm(job_desc, resume_text):
|
43 |
prompt = f"""
|
44 |
Given the following job description and resume, list the important skills, tools, and concepts from the job description that are missing or weakly represented in the resume.
|
|
|
51 |
result = summarizer(prompt, max_new_tokens=300, do_sample=True)[0]
|
52 |
return result.get('generated_text', result.get('summary_text', str(result))).strip()
|
53 |
|
54 |
+
# Resume improvement prompt
|
55 |
def build_dynamic_prompt(job_desc, resume_text, analyze_with_jd):
|
56 |
prompt = f"""
|
57 |
Analyze the resume below and organize it into meaningful categories (e.g., Skills, Education, Work Experience, etc.).
|
|
|
64 |
"""
|
65 |
return prompt
|
66 |
|
67 |
+
# Generate analysis result
|
68 |
def analyze_resume(job_desc, resume_text, analyze_with_jd):
|
69 |
if not resume_text.strip():
|
70 |
return "β οΈ Please paste your resume text."
|
|
|
74 |
try:
|
75 |
result = summarizer(user_prompt, max_new_tokens=512, do_sample=True)[0]
|
76 |
response_text = result.get('generated_text', result.get('summary_text', str(result))).strip()
|
77 |
+
|
78 |
if analyze_with_jd and job_desc:
|
79 |
matched, missing = compare_keywords(resume_text, job_desc)
|
80 |
highlighted_resume = highlight_keywords(resume_text, matched)
|
81 |
llm_missing_keywords = extract_missing_keywords_with_llm(job_desc, resume_text)
|
82 |
+
|
83 |
+
return f"""### π Resume with Highlighted Matches
|
84 |
+
|
85 |
+
{highlighted_resume}
|
86 |
+
|
87 |
+
---
|
88 |
+
|
89 |
+
** Matched Keywords (Semantic Comparison):**
|
90 |
+
{', '.join(sorted(matched)) or 'None'}
|
91 |
+
|
92 |
+
** Missing Keywords (Semantic Comparison):**
|
93 |
+
{', '.join(sorted(missing)) or 'None'}
|
94 |
+
|
95 |
+
** LLM-Inferred Missing Keywords:**
|
96 |
+
{llm_missing_keywords}
|
97 |
+
|
98 |
+
---
|
99 |
+
|
100 |
+
{response_text}"""
|
101 |
return response_text
|
102 |
except Exception as e:
|
103 |
return f"β Error: {str(e)}"
|
104 |
|
105 |
+
# Gradio Interface
|
106 |
def create_ui():
|
107 |
with gr.Blocks() as demo:
|
108 |
with gr.Row():
|