Gemma / app.py
ShubhamD95's picture
Update app.py
cdf6731 verified
raw
history blame
2.33 kB
import gradio as gr
from keybert import KeyBERT
from sentence_transformers import SentenceTransformer
import re
# βœ… Load Hugging Face model (no API key needed)
model = SentenceTransformer('all-MiniLM-L6-v2')
kw_model = KeyBERT(model)
# πŸ” Helper: Clean keywords from text (split on commas, newlines)
def clean_keywords(text):
keywords = re.split(r"[,\n]", text.lower())
return set(kw.strip() for kw in keywords if kw.strip())
# πŸ” Main function
def extract_keywords(job_desc, resume_text, analyze_with_jd):
if not resume_text.strip():
return "⚠️ Please paste your resume text."
# Step 1: Combine input for keyword extraction
combined_text = job_desc + "\n\n" + resume_text if analyze_with_jd and job_desc else resume_text
extracted_keywords = kw_model.extract_keywords(combined_text, top_n=15, stop_words='english')
extracted_set = set([kw.lower() for kw, _ in extracted_keywords])
# Step 2: Tokenize job description and resume separately
jd_tokens = clean_keywords(job_desc) if analyze_with_jd and job_desc else set()
resume_tokens = clean_keywords(resume_text)
# Step 3: Match and miss
matched = sorted(jd_tokens & resume_tokens)
missing = sorted(jd_tokens - resume_tokens)
# Step 4: Output
result = ""
result += f"πŸ” **Extracted Keywords:** {', '.join(extracted_set)}\n\n"
result += f"βœ… **Matched (Job & Resume):** {', '.join(matched) or 'None'}\n"
result += f"❌ **Missing in Resume:** {', '.join(missing) or 'None'}\n"
return result
# πŸŽ›οΈ Gradio UI
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
analyze_checkbox = gr.Checkbox(label="Analyze with Job Description", value=True)
job_desc = gr.Textbox(label="Job Description", lines=6, placeholder="Paste job description here...")
resume_text = gr.Textbox(label="Resume Text", lines=12, placeholder="Paste resume content here...")
with gr.Column():
output_keywords = gr.Markdown(label="Keyword Match Result") # Markdown for styled output
resume_text.change(fn=extract_keywords, inputs=[job_desc, resume_text, analyze_checkbox], outputs=output_keywords)
job_desc.change(fn=extract_keywords, inputs=[job_desc, resume_text, analyze_checkbox], outputs=output_keywords)
demo.launch()