Spaces:
Sleeping
Sleeping
import gradio as gr | |
from keybert import KeyBERT | |
from sentence_transformers import SentenceTransformer | |
import re | |
# β Load Hugging Face model (no API key needed) | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
kw_model = KeyBERT(model) | |
# π Helper: Clean keywords from text (split on commas, newlines) | |
def clean_keywords(text): | |
keywords = re.split(r"[,\n]", text.lower()) | |
return set(kw.strip() for kw in keywords if kw.strip()) | |
# π Main function | |
def extract_keywords(job_desc, resume_text, analyze_with_jd): | |
if not resume_text.strip(): | |
return "β οΈ Please paste your resume text." | |
# Step 1: Combine input for keyword extraction | |
combined_text = job_desc + "\n\n" + resume_text if analyze_with_jd and job_desc else resume_text | |
extracted_keywords = kw_model.extract_keywords(combined_text, top_n=15, stop_words='english') | |
extracted_set = set([kw.lower() for kw, _ in extracted_keywords]) | |
# Step 2: Tokenize job description and resume separately | |
jd_tokens = clean_keywords(job_desc) if analyze_with_jd and job_desc else set() | |
resume_tokens = clean_keywords(resume_text) | |
# Step 3: Match and miss | |
matched = sorted(jd_tokens & resume_tokens) | |
missing = sorted(jd_tokens - resume_tokens) | |
# Step 4: Output | |
result = "" | |
result += f"π **Extracted Keywords:** {', '.join(extracted_set)}\n\n" | |
result += f"β **Matched (Job & Resume):** {', '.join(matched) or 'None'}\n" | |
result += f"β **Missing in Resume:** {', '.join(missing) or 'None'}\n" | |
return result | |
# ποΈ Gradio UI | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
analyze_checkbox = gr.Checkbox(label="Analyze with Job Description", value=True) | |
job_desc = gr.Textbox(label="Job Description", lines=6, placeholder="Paste job description here...") | |
resume_text = gr.Textbox(label="Resume Text", lines=12, placeholder="Paste resume content here...") | |
with gr.Column(): | |
output_keywords = gr.Markdown(label="Keyword Match Result") # Markdown for styled output | |
resume_text.change(fn=extract_keywords, inputs=[job_desc, resume_text, analyze_checkbox], outputs=output_keywords) | |
job_desc.change(fn=extract_keywords, inputs=[job_desc, resume_text, analyze_checkbox], outputs=output_keywords) | |
demo.launch() | |