Spaces:
Runtime error
Runtime error
File size: 7,703 Bytes
70d113f 5dfce3a 70d113f 60b820b 70d113f 5dfce3a 70d113f 7ac8e01 70d113f 5dfce3a 70d113f 5dfce3a 2f7187f c70b1b3 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 7ac8e01 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 60b820b 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 04e4d09 70d113f 5dfce3a e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 60b820b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import peft
from peft import LoraConfig
from transformers import AutoTokenizer,BitsAndBytesConfig, AutoModelForCausalLM, CLIPVisionModel, AutoProcessor
import torch
from peft import PeftModel
import torch.nn as nn
import whisperx
import os
clip_model_name = "openai/clip-vit-base-patch32"
phi_model_name = "microsoft/phi-2"
tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(clip_model_name)
tokenizer.pad_token = tokenizer.eos_token
IMAGE_TOKEN_ID = 23893 # token for word comment
device = "cuda" if torch.cuda.is_available() else "cpu"
clip_embed = 768
phi_embed = 2560
compute_type = "float32"
audio_batch_size = 16
class SimpleResBlock(nn.Module):
def __init__(self, phi_embed):
super().__init__()
self.pre_norm = nn.LayerNorm(phi_embed)
self.proj = nn.Sequential(
nn.Linear(phi_embed, phi_embed),
nn.GELU(),
nn.Linear(phi_embed, phi_embed)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
# models
clip_model = CLIPVisionModel.from_pretrained(clip_model_name).to(device)
projection = torch.nn.Linear(clip_embed, phi_embed).to(device)
resblock = SimpleResBlock(phi_embed).to(device)
phi_model = AutoModelForCausalLM.from_pretrained(phi_model_name,trust_remote_code=True).to(device)
# Assuming you have defined 'device' and 'compute_type' elsewhere
audio_model = whisperx.load_model("tiny", device, compute_type=compute_type, asr_options={'max_new_tokens': 2048, 'clip_timestamps': True, 'hallucination_silence_threshold': 0.25})
# load weights
model_to_merge = PeftModel.from_pretrained(phi_model,os.path.join(os.getcwd(), 'model_chkpt/lora_adaptor'))
merged_model = model_to_merge.merge_and_unload()
projection.load_state_dict(torch.load(os.path.join(os.getcwd(),'model_chkpt/finetunned_projection.pth'),map_location=torch.device(device)))
resblock.load_state_dict(torch.load(os.path.join(os.getcwd(),'model_chkpt/finetuned_resblock.pth'),map_location=torch.device(device)))
def model_generate_ans(img=None,img_audio=None,val_q=None):
max_generate_length = 100
val_combined_embeds = []
with torch.no_grad():
# image
if img is not None:
image_processed = processor(images=img, return_tensors="pt").to(device)
clip_val_outputs = clip_model(**image_processed).last_hidden_state[:,1:,:]
val_image_embeds = projection(clip_val_outputs)
val_image_embeds = resblock(val_image_embeds).to(torch.float16)
img_token_tensor = torch.tensor(IMAGE_TOKEN_ID).to(device)
img_token_embeds = merged_model.model.embed_tokens(img_token_tensor).unsqueeze(0).unsqueeze(0)
val_combined_embeds.append(val_image_embeds)
val_combined_embeds.append(img_token_embeds)
# audio
if img_audio is not None:
audio_result = audio_model.transcribe(img_audio)
audio_text = ''
for seg in audio_result['segments']:
audio_text += seg['text']
audio_text = audio_text.strip()
audio_tokens = tokenizer(audio_text, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
audio_embeds = merged_model.model.embed_tokens(audio_tokens).unsqueeze(0)
val_combined_embeds.append(audio_embeds)
# text question
if len(val_q) != 0:
val_q_tokenised = tokenizer(val_q, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
val_q_embeds = merged_model.model.embed_tokens(val_q_tokenised).unsqueeze(0)
val_combined_embeds.append(val_q_embeds)
val_combined_embeds = torch.cat(val_combined_embeds,dim=1)
#val_combined_embeds = torch.cat([val_image_embeds, img_token_embeds, val_q_embeds], dim=1) # 4, 69, 2560
predicted_caption = torch.full((1,max_generate_length),50256).to(device)
for g in range(max_generate_length):
phi_output_logits = merged_model(inputs_embeds=val_combined_embeds)['logits'] # 4, 69, 51200
predicted_word_token_logits = phi_output_logits[:, -1, :].unsqueeze(1) # 4,1,51200
predicted_word_token = torch.argmax(predicted_word_token_logits, dim = -1) # 4,1
predicted_caption[:,g] = predicted_word_token.view(1,-1)
next_token_embeds = phi_model.model.embed_tokens(predicted_word_token) # 4,1,2560
val_combined_embeds = torch.cat([val_combined_embeds, next_token_embeds], dim=1)
predicted_captions_decoded = tokenizer.batch_decode(predicted_caption,ignore_index = 50256)[0]
return predicted_captions_decoded
with gr.Blocks() as demo:
# Add custom CSS stylesheet within Markdown
gr.Markdown(
"""
<style>
/* General Layout */
body {
font-family: 'Arial', sans-serif;
background-color: #f4f6f9; /* Light pastel background */
margin: 0;
padding: 0;
}
/* Header */
h1, h2, h3 {
text-align: center;
color: #3a3a3a;
font-weight: bold;
}
gr-Markdown h1 {
font-size: 28px;
color: #a3d5d3; /* Soft pastel teal for the header */
}
/* Container and Columns */
.gr-row {
display: flex;
justify-content: center;
margin: 20px 0;
}
.gr-column {
flex: 1;
margin: 0 10px;
padding: 10px;
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.05);
background-color: #f8f0fa; /* Pastel pink background for columns */
border-radius: 8px;
}
/* Input Components */
.gr-Image, .gr-Audio, .gr-Text {
width: 100%;
margin-bottom: 15px;
background-color: #fff5e1; /* Soft pastel yellow for inputs */
border: 1px solid #e3e3e3;
border-radius: 8px;
}
.gr-Image label, .gr-Audio label, .gr-Text label {
font-size: 16px;
font-weight: bold;
color: #8b8b8b;
}
/* Submit Button */
.gr-Button {
width: 100%;
background-color: #b2c7e1; /* Pastel blue button */
color: white;
padding: 10px;
font-size: 16px;
border: none;
border-radius: 5px;
cursor: pointer;
transition: background-color 0.3s ease;
}
.gr-Button:hover {
background-color: #9db6d3; /* Darker pastel blue on hover */
}
/* Text Output */
.gr-Text {
font-size: 16px;
color: #333;
min-height: 100px;
padding: 10px;
border: 1px solid #ddd;
border-radius: 5px;
background-color: #edf5e1; /* Light pastel green for the output text box */
}
/* Responsive Design */
@media (max-width: 768px) {
.gr-row {
flex-direction: column;
}
.gr-column {
margin: 10px 0;
}
}
</style>
# Engage with MultiModal GPT!
A seamless AI experience combining CLIP and Phi-2 models.
"""
)
# app GUI
with gr.Row():
with gr.Column():
img_input = gr.Image(label='Image',type="pil")
img_audio = gr.Audio(label="Audio Query", sources=['microphone', 'upload'], type='filepath')
img_question = gr.Text(label ='Text Query')
with gr.Column():
img_answer = gr.Text(label ='Answer')
section_btn = gr.Button("Submit")
section_btn.click(model_generate_ans, inputs=[img_input,img_audio,img_question], outputs=[img_answer])
demo.launch() |