Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,124 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
|
6 |
-
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
MODEL_ID,
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
# 2) define inference function
|
19 |
def generate(message, history):
|
20 |
"""
|
|
|
21 |
message: Current user message (string)
|
22 |
history: List of [user_message, assistant_message] pairs
|
23 |
returns: assistant's reply (string)
|
24 |
"""
|
25 |
-
#
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
for user_msg, assistant_msg in history:
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
return reply
|
42 |
|
43 |
-
#
|
44 |
demo = (
|
45 |
gr.ChatInterface(
|
46 |
fn=generate,
|
47 |
-
title="
|
48 |
-
description="Chat with
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
type="messages",
|
50 |
)
|
51 |
-
.queue(api_open=True) #
|
52 |
)
|
53 |
|
54 |
-
#
|
55 |
if __name__ == "__main__":
|
56 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from peft import PeftModel
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
|
7 |
+
# Update this to your Hugging Face model ID
|
8 |
+
MODEL_ID = "YourUsername/TinyLlama-ECommerce-Chatbot" # Replace with your actual model ID
|
9 |
+
BASE_MODEL_ID = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
10 |
|
11 |
+
def load_model():
|
12 |
+
"""Load the fine-tuned model with PEFT adapter"""
|
13 |
+
print("Loading tokenizer...")
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
15 |
+
|
16 |
+
# Ensure pad token is set
|
17 |
+
if tokenizer.pad_token is None:
|
18 |
+
tokenizer.pad_token = tokenizer.eos_token
|
19 |
+
|
20 |
+
print("Loading base model...")
|
21 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
BASE_MODEL_ID,
|
23 |
+
load_in_4bit=True, # comment out to use full precision
|
24 |
+
torch_dtype=torch.float16,
|
25 |
+
device_map="auto",
|
26 |
+
trust_remote_code=True,
|
27 |
+
)
|
28 |
+
|
29 |
+
print("Loading PEFT adapter...")
|
30 |
+
model = PeftModel.from_pretrained(base_model, MODEL_ID)
|
31 |
+
|
32 |
+
print("Model loaded successfully!")
|
33 |
+
return model, tokenizer
|
34 |
+
|
35 |
+
# Load model and tokenizer
|
36 |
+
model, tokenizer = load_model()
|
37 |
|
|
|
38 |
def generate(message, history):
|
39 |
"""
|
40 |
+
Generate response using the fine-tuned e-commerce chatbot
|
41 |
message: Current user message (string)
|
42 |
history: List of [user_message, assistant_message] pairs
|
43 |
returns: assistant's reply (string)
|
44 |
"""
|
45 |
+
# Use ChatML format that your model was trained on
|
46 |
+
DEFAULT_SYSTEM_PROMPT = "You are a helpful e-commerce customer service assistant. Provide accurate, helpful, and friendly responses to customer inquiries about products, orders, shipping, returns, and general shopping assistance."
|
47 |
+
|
48 |
+
# Build conversation in ChatML format
|
49 |
+
conversation = f"<|system|>\n{DEFAULT_SYSTEM_PROMPT}\n"
|
50 |
+
|
51 |
+
# Add history
|
52 |
for user_msg, assistant_msg in history:
|
53 |
+
conversation += f"<|user|>\n{user_msg}\n<|assistant|>\n{assistant_msg}\n"
|
54 |
+
|
55 |
+
# Add current message
|
56 |
+
conversation += f"<|user|>\n{message}\n<|assistant|>\n"
|
57 |
+
|
58 |
+
# Tokenize
|
59 |
+
inputs = tokenizer(
|
60 |
+
conversation,
|
61 |
+
return_tensors="pt",
|
62 |
+
max_length=512,
|
63 |
+
truncation=True,
|
64 |
+
padding=True
|
65 |
+
).to(model.device)
|
66 |
+
|
67 |
+
# Generate response
|
68 |
+
with torch.no_grad():
|
69 |
+
outputs = model.generate(
|
70 |
+
**inputs,
|
71 |
+
max_new_tokens=150,
|
72 |
+
do_sample=True,
|
73 |
+
temperature=0.8,
|
74 |
+
top_p=0.9,
|
75 |
+
top_k=50,
|
76 |
+
repetition_penalty=1.1,
|
77 |
+
pad_token_id=tokenizer.pad_token_id,
|
78 |
+
eos_token_id=tokenizer.eos_token_id,
|
79 |
+
)
|
80 |
+
|
81 |
+
# Decode and extract assistant response
|
82 |
+
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
83 |
+
|
84 |
+
# Extract only the new assistant response
|
85 |
+
if "<|assistant|>" in full_text:
|
86 |
+
# Get the last assistant response
|
87 |
+
assistant_parts = full_text.split("<|assistant|>")
|
88 |
+
if len(assistant_parts) > 1:
|
89 |
+
reply = assistant_parts[-1].strip()
|
90 |
+
# Remove any trailing tokens
|
91 |
+
if "<|user|>" in reply:
|
92 |
+
reply = reply.split("<|user|>")[0].strip()
|
93 |
+
else:
|
94 |
+
reply = "I apologize, but I couldn't generate a proper response. Please try again."
|
95 |
+
else:
|
96 |
+
reply = "I apologize, but I couldn't generate a proper response. Please try again."
|
97 |
+
|
98 |
return reply
|
99 |
|
100 |
+
# Build Gradio ChatInterface
|
101 |
demo = (
|
102 |
gr.ChatInterface(
|
103 |
fn=generate,
|
104 |
+
title="E-commerce Customer Service Chatbot",
|
105 |
+
description="Chat with our AI-powered e-commerce assistant. Ask about products, orders, shipping, returns, and more!",
|
106 |
+
examples=[
|
107 |
+
"What's your return policy?",
|
108 |
+
"How long does shipping take?",
|
109 |
+
"Do you have any discounts available?",
|
110 |
+
"I need help with my order",
|
111 |
+
"What payment methods do you accept?"
|
112 |
+
],
|
113 |
type="messages",
|
114 |
)
|
115 |
+
.queue(api_open=True) # allow direct HTTP POST to /api/predict
|
116 |
)
|
117 |
|
118 |
+
# Launch the app
|
119 |
if __name__ == "__main__":
|
120 |
+
demo.launch(
|
121 |
+
server_name="0.0.0.0", # Allow external access
|
122 |
+
server_port=7860, # Default Gradio port
|
123 |
+
share=False # Set to True if you want a public link
|
124 |
+
)
|