ShenghaoYummy commited on
Commit
086ed8e
·
1 Parent(s): 6ffcc9c

feat: add chat UI + JSON API

Browse files
Files changed (2) hide show
  1. app.py +48 -57
  2. requirements.txt +5 -1
app.py CHANGED
@@ -1,64 +1,55 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import gradio as gr
4
+ import os
5
+
6
+ MODEL_ID = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
7
+
8
+ # 1) load model & tokenizer
9
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
10
+ model = AutoModelForCausalLM.from_pretrained(
11
+ MODEL_ID,
12
+ load_in_4bit=True, # comment out to use full precision
13
+ torch_dtype=torch.float16,
14
+ device_map="auto",
15
+ trust_remote_code=True,
16
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ # 2) define inference function
19
+ def generate(messages):
20
+ """
21
+ messages: List of alternating [user, assistant, user, ...]
22
+ returns: [user, assistant, user, assistant, ...] with model's reply appended
23
+ """
24
+ # rebuild a single prompt string
25
+ prompt = ""
26
+ for i in range(0, len(messages), 2):
27
+ prompt += f"User: {messages[i]}\n"
28
+ if i+1 < len(messages):
29
+ prompt += f"Assistant: {messages[i+1]}\n"
30
+ prompt += "Assistant:"
31
+
32
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
33
+ outputs = model.generate(
34
+ **inputs,
35
+ max_new_tokens=128,
36
+ do_sample=True,
37
+ temperature=0.7,
38
+ )
39
+ text = tokenizer.decode(outputs[0], skip_special_tokens=True)
40
+ # strip everything before the last "Assistant:"
41
+ reply = text.split("Assistant:")[-1].strip()
42
+
43
+ messages.append(reply)
44
+ return messages
45
+
46
+ # 3) build Gradio ChatInterface
47
  demo = gr.ChatInterface(
48
+ fn=generate,
49
+ title="TinyLlama-1.1B Chat API",
50
+ description="Chat with TinyLlama-1.1B and call via /api/predict",
 
 
 
 
 
 
 
 
 
 
51
  )
52
 
53
+ # 4) launch
54
  if __name__ == "__main__":
55
  demo.launch()
requirements.txt CHANGED
@@ -1 +1,5 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
1
+ transformers
2
+ torch
3
+ accelerate
4
+ bitsandbytes # for 4-bit quant
5
+ gradio # Gradio UI + auto-API