ShahzadSohail's picture
Create app.py
d438794 verified
raw
history blame contribute delete
543 Bytes
import gradio as gr
from transformers import pipeline
# Load your model (make sure this is your actual model ID)
emotion_classifier = pipeline("text-classification", model="ShahzadSohail/emotion_detection_model_final", return_all_scores=True)
# Define the function to return prediction
def predict_emotion(text):
results = emotion_classifier(text)
return results
# Gradio interface (for UI)
iface = gr.Interface(fn=predict_emotion, inputs=gr.Textbox(label="Enter Text"), outputs="json")
# Enable API mode
iface.launch(share=False)