import streamlit as st from transformers import pipeline # Load the audio classification pipeline audio_classification_pipeline = pipeline("audio-classification", model="MIT/ast-finetuned-audioset-10-10-0.4593") def classify_audio(audio_file): # Perform audio classification results = audio_classification_pipeline(audio=audio_file) return results def main(): st.title('Hugging Face Audio Classification') # File uploader for audio file st.subheader('Upload Audio File:') audio_file = st.file_uploader("Choose a WAV file", type=["wav"]) # Check if audio file is uploaded if audio_file is not None: st.audio(audio_file, format='audio/wav') # Button to classify audio if st.button('Classify'): with st.spinner('Classifying...'): # Perform classification results = classify_audio(audio_file) st.success('Classification complete!') st.write("Prediction:", results) if __name__ == '__main__': main()