import gradio as gr from transformers import AutoTokenizer import torch from tiny_finbert import TinyFinBERTRegressor, preprocess_texts import os import nltk nltk.download('stopwords') MODEL_DIR = "./saved_model" DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR) model = TinyFinBERTRegressor().to(DEVICE) model.load_state_dict(torch.load(os.path.join(MODEL_DIR, "regressor_model.pt"), map_location=DEVICE)) model.eval() def predict_sentiment(text): processed = preprocess_texts([text])[0] inputs = tokenizer(processed, return_tensors="pt", truncation=True, padding='max_length', max_length=128) inputs = {k: v.to(DEVICE) for k, v in inputs.items() if k != "token_type_ids"} with torch.no_grad(): score = model(**inputs)["score"].item() if score > 0.3: interpretation = "positive" elif score < -0.3: interpretation = "negative" else: interpretation = "neutral" return round(score, 4), interpretation iface = gr.Interface(fn=predict_sentiment, inputs=gr.Textbox(label="Enter financial sentence"), outputs=[ gr.Number(label="Sentiment Score"), gr.Textbox(label="Interpretation") ], title="TinyFinBERT Sentiment Analysis", # allow_api=True api_name="predict" ) #iface.launch() iface.launch( server_name="0.0.0.0", share=True, #enable_queue=False max_threads=40, show_api=True )