File size: 11,105 Bytes
8795c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import torch
import pandas as pd
from datasets import Dataset
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from transformers import AutoTokenizer, Trainer, TrainingArguments, IntervalStrategy
import re
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModel, AutoConfig, AutoTokenizer, Trainer, TrainingArguments, IntervalStrategy

from nltk.corpus import stopwords
import spacy


class TinyFinBERTRegressor(nn.Module):
    def __init__(self, pretrained_model='huawei-noah/TinyBERT_General_4L_312D'):
        super().__init__()
        if pretrained_model:
            self.config = AutoConfig.from_pretrained(pretrained_model)
            self.bert = AutoModel.from_pretrained(pretrained_model, config=self.config)
        else:
            self.config = AutoConfig()
            self.bert = AutoModel(self.config)
        self.regressor = nn.Linear(self.config.hidden_size, 1)

        # Manually register the position_ids buffer to avoid missing key error
        self.bert.embeddings.register_buffer(
            "position_ids",
            torch.arange(512).expand((1, -1)),
            persistent=False,
        )

    def forward(self, input_ids=None, attention_mask=None, labels=None):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        cls_output = outputs.last_hidden_state[:, 0]
        score = self.regressor(cls_output).squeeze()
        loss = F.mse_loss(score, labels) if labels is not None else None
        return {'loss': loss, 'score': score}


def preprocess_texts(texts):
    nlp = spacy.load("en_core_web_sm", disable=["ner", "parser"])  # Speeds up processing
    negations = {'no', 'not', 'none', 'nobody', 'nothing', 'neither', 'nowhere', 'never',
                 'hardly', 'scarcely', 'barely', "n't", "without", "unless", "nor"}
    stop_words = set(stopwords.words('english')) - negations

    processed = []
    for text in texts:
        text = text.lower()
        text = re.sub(r'[^a-zA-Z\s]', '', text)
        doc = nlp(text)
        tokens = [
            token.lemma_ for token in doc
            if token.lemma_.strip()  # token.lemma_ not in stop_words and
        ]
        processed.append(' '.join(tokens))
    return processed


def load_phrasebank(path):
    with open(path, 'r', encoding='latin1') as f:
        lines = f.readlines()
    sents, scores = [], []
    for line in lines:
        if '@' in line:
            s, l = line.strip().split('@')
            score = 0.0 if l.lower() == 'neutral' else (-1.0 if l.lower() == 'negative' else 1.0)
            sents.append(s)
            scores.append(score)
    return pd.DataFrame({'text': sents, 'score': scores})


def load_words_phrases(path):
    with open(path, 'r', encoding='latin1') as f:
        lines = f.readlines()
    data = []
    for line in lines:
        line = line.strip()
        match = re.search(r',(-?\d+\.?\d*)$', line)
        if match:
            text = line[:match.start()].strip()
            score = float(match.group(1))
            data.append((text, score))
    return pd.DataFrame(data, columns=["text", "score"])


def train_model(phrase_path, words_path, save_path):
    os.makedirs(save_path, exist_ok=True)

    # Set device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    phrase_df = load_phrasebank(phrase_path)
    words_df = load_words_phrases(words_path)

    phrase_df['text'] = preprocess_texts(phrase_df['text'])
    words_df['text'] = preprocess_texts(words_df['text'])

    train_phrase, test_phrase = train_test_split(phrase_df, test_size=0.2, random_state=42)
    train_df = pd.concat([train_phrase, words_df])
    test_df = test_phrase.reset_index(drop=True)

    tokenizer = AutoTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')

    def tokenize(batch):
        tokens = tokenizer(batch["text"], padding='max_length', truncation=True, max_length=128)
        tokens["labels"] = batch["score"]
        return tokens

    train_dataset = Dataset.from_pandas(train_df).map(tokenize, batched=True)
    test_dataset = Dataset.from_pandas(test_df).map(tokenize, batched=True)

    args = TrainingArguments(
        output_dir=os.path.join(save_path, "results"),
        evaluation_strategy=IntervalStrategy.EPOCH,
        save_strategy=IntervalStrategy.EPOCH,
        learning_rate=2e-5,
        per_device_train_batch_size=16,
        per_device_eval_batch_size=64,
        num_train_epochs=5,
        weight_decay=0.01,
        load_best_model_at_end=True,
        metric_for_best_model="eval_loss"
    )

    model = TinyFinBERTRegressor().to(device)

    trainer = Trainer(
        model=model,
        args=args,
        train_dataset=train_dataset,
        eval_dataset=test_dataset,
        tokenizer=tokenizer,
        compute_metrics=lambda pred: {
            "mse": mean_squared_error(pred.label_ids, pred.predictions),
            "r2": r2_score(pred.label_ids, pred.predictions)
        }
    )

    trainer.train()

    # Save the model and tokenizer
    model_to_save = model.module if hasattr(model, 'module') else model  # Handle distributed/parallel training
    torch.save(model_to_save.state_dict(), os.path.join(save_path, "regressor_model.pt"))
    tokenizer.save_pretrained(save_path)
    print(f"Model saved to {save_path}")


from sklearn.metrics import (
    mean_squared_error, r2_score,
    accuracy_score, precision_score, recall_score, f1_score,
    roc_auc_score, confusion_matrix, cohen_kappa_score
)
from sklearn.preprocessing import label_binarize


def evaluate_model(phrase_path, model_path):
    # Set device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    phrase_df = load_phrasebank(phrase_path)
    _, test_df = train_test_split(phrase_df, test_size=0.2, random_state=42)
    test_df['text'] = preprocess_texts(test_df['text'])

    tokenizer = AutoTokenizer.from_pretrained(model_path)
    model = TinyFinBERTRegressor()
    model.load_state_dict(torch.load(os.path.join(model_path, "regressor_model.pt"), map_location=device))
    model.to(device)
    model.eval()

    y_true, y_pred, y_scores = [], [], []

    for _, row in test_df.iterrows():
        inputs = tokenizer(row["text"], return_tensors="pt", truncation=True, padding='max_length', max_length=128)
        inputs = {k: v.to(device) for k, v in inputs.items() if k != "token_type_ids"}
        with torch.no_grad():
            score = model(**inputs)["score"].item()
        y_scores.append(score)
        y_true.append(row["score"])

    # regression metrics
    mse = mean_squared_error(y_true, y_scores)
    r2 = r2_score(y_true, y_scores)

    y_pred = [1 if s > 0.3 else -1 if s < -0.3 else 0 for s in y_scores]
    y_true_classes = [int(round(s)) for s in y_true]

    acc = accuracy_score(y_true_classes, y_pred)
    prec = precision_score(y_true_classes, y_pred, average='weighted', zero_division=0)
    rec = recall_score(y_true_classes, y_pred, average='weighted')
    f1 = f1_score(y_true_classes, y_pred, average='weighted')
    kappa = cohen_kappa_score(y_true_classes, y_pred)
    cm = confusion_matrix(y_true_classes, y_pred)

    y_true_bin = label_binarize(y_true_classes, classes=[-1, 0, 1])
    y_score_bin = label_binarize(y_pred, classes=[-1, 0, 1])
    roc_auc = roc_auc_score(y_true_bin, y_score_bin, average='macro', multi_class='ovo')

    print(f"Sentiment Regression Metrics:")
    print(f"- MSE: {mse:.4f}")
    print(f"- R²: {r2:.4f}")
    print(f"- Accuracy: {acc:.4f}")
    print(f"- Precision: {prec:.4f}")
    print(f"- Recall: {rec:.4f}")
    print(f"- F1 Score: {f1:.4f}")
    print(f"- ROC-AUC: {roc_auc:.4f}")
    print(f"- Cohen's Kappa: {kappa:.4f}")
    print(f"- Confusion Matrix:\n{cm}")


def test(model_path):
    # Set device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    tokenizer = AutoTokenizer.from_pretrained(model_path)
    model = TinyFinBERTRegressor()
    model.load_state_dict(torch.load(os.path.join(model_path, "regressor_model.pt"), map_location=device))
    model.to(device)
    model.eval()

    texts = [
        "The company's earnings exceeded expectations.",
        "They faced major losses this quarter.",
        "They didn't face major losses this quarter.",
        "Stock prices remained the same.",
        "boost",
        "strong boost",
        "AMD was not able to reduce losses.",
        "AMD reduced debt significantly, improves balance sheet",
        "Economic indicators point to contraction in telecom sector",
        "Company didn't have increased losses over last years."
    ]

    for text in texts:
        clean_text = preprocess_texts([text])[0]
        print(f"Original Text: {text}")
        print(f"Processed Text: {clean_text}")

        tokens = tokenizer.tokenize(clean_text)
        print(f"Tokens: {tokens}")

        inputs = tokenizer(clean_text, return_tensors="pt", truncation=True, padding='max_length', max_length=128)
        inputs = {k: v.to(device) for k, v in inputs.items() if k != "token_type_ids"}

        with torch.no_grad():
            score = model(**inputs)["score"].item()

        print(f"Predicted Sentiment Score: {score:.3f}")
        sentiment = "positive" if score > 0.3 else "negative" if score < -0.3 else "neutral"
        print(f"Sentiment: {sentiment}\n")


def init_model():
    """Function to properly initialize model with position_ids regardless of whether it's being loaded or created new"""
    model = TinyFinBERTRegressor()

    # Make sure position_ids is registered
    if not hasattr(model.bert.embeddings, 'position_ids'):
        model.bert.embeddings.register_buffer(
            "position_ids",
            torch.arange(512).expand((1, -1)),
            persistent=False,
        )
    return model


def create_api_model(model_path):
    """Create a model suitable for a FastAPI application"""
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    tokenizer = AutoTokenizer.from_pretrained(model_path)

    # Initialize model with position_ids properly registered
    model = init_model()
    model.load_state_dict(torch.load(os.path.join(model_path, "regressor_model.pt"), map_location=device))
    model.to(device)
    model.eval()

    return model, tokenizer, device


if __name__ == "__main__":
    model_dir = "./saved_model"
    phrase_path = "./Sentences_50Agree.txt"
    words_path = "./financial_sentiment_words_phrases_negations.csv"

    # Check for GPU availability
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    if not os.path.isfile(os.path.join(model_dir, "regressor_model.pt")):
        print("Training new model...")
        train_model(phrase_path, words_path, model_dir)
    else:
        print(f"Model found at {os.path.join(model_dir, 'regressor_model.pt')}")

    evaluate_model(phrase_path, model_dir)
    test(model_dir)