File size: 15,718 Bytes
2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 2067094 7d3b243 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import streamlit as st
import tensorflow as tf
from PIL import Image
import numpy as np
import cv2
from huggingface_hub import snapshot_download
import traceback
# --- Model Loading Function (COMPATIBILITY FOCUSED) ---
@st.cache_resource
def load_keras_model():
"""
Loads a TensorFlow SavedModel, handling compatibility issues
with legacy optimizers and Keras 3.
"""
model_repo = "SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net"
model_path = snapshot_download(repo_id=model_repo)
st.info(f"Model downloaded to: {model_path}")
# Approach 1: Loading with tf.compat.v1 for legacy compatibility
st.info("Attempt 1: Loading with tf.compat.v1...")
try:
import tensorflow.compat.v1 as tf_v1
tf_v1.disable_v2_behavior()
# Create a persistent session that doesn't close
sess = tf_v1.Session()
# Load the meta graph
tf_v1.saved_model.loader.load(sess, ['serve'], model_path)
# Find input and output tensors
input_tensor = sess.graph.get_tensor_by_name('serving_default_input_1:0')
output_tensor = sess.graph.get_tensor_by_name('StatefulPartitionedCall:0')
class TFv1ModelWrapper:
def __init__(self, sess, input_tensor, output_tensor):
self.sess = sess
self.input_tensor = input_tensor
self.output_tensor = output_tensor
def predict(self, input_data):
# Convert input to numpy array
if hasattr(input_data, 'numpy'):
# If it's an EagerTensor, use .numpy()
input_data = input_data.numpy()
elif isinstance(input_data, tf.Tensor):
# If it's a SymbolicTensor or other tensor type, use tf.Session.run
with tf_v1.Session() as temp_sess:
input_data = temp_sess.run(input_data)
elif not isinstance(input_data, np.ndarray):
# Convert to numpy array if it isn't already
input_data = np.array(input_data)
# Run prediction
result = self.sess.run(self.output_tensor,
feed_dict={self.input_tensor: input_data})
return result
def __del__(self):
# Close the session when the object is deleted
try:
if hasattr(self, 'sess') and self.sess is not None:
self.sess.close()
except:
pass
model = TFv1ModelWrapper(sess, input_tensor, output_tensor)
st.success("Model loaded successfully using tf.compat.v1!")
return model
except Exception as e1:
st.warning(f"Attempt 1 failed: {e1}")
# Approach 2: Loading with signature inspection
st.info("Attempt 2: Loading with signature inspection...")
try:
# Load just to inspect the signatures
loaded_model = tf.saved_model.load(model_path)
# Get information about the signatures
signatures = loaded_model.signatures
st.info(f"Available signatures: {list(signatures.keys())}")
if signatures:
# Use the first available signature
signature_key = list(signatures.keys())[0]
signature = signatures[signature_key]
class SignatureModelWrapper:
def __init__(self, signature):
self.signature = signature
def predict(self, input_data):
# Convert input to numpy array before converting to tensor
if hasattr(input_data, 'numpy'):
input_data = input_data.numpy()
elif isinstance(input_data, tf.Tensor):
# For SymbolicTensor, try to evaluate it
try:
input_data = tf.keras.backend.eval(input_data)
except:
# If it fails, convert to numpy using a different approach
input_data = np.array(input_data)
# Now convert to a TensorFlow tensor
if not isinstance(input_data, tf.Tensor):
input_data = tf.convert_to_tensor(input_data, dtype=tf.float32)
# Get the name of the first input
input_specs = self.signature.structured_input_signature[1]
input_name = list(input_specs.keys())[0]
# Run prediction
result = self.signature(**{input_name: input_data})
# Handle output
if isinstance(result, dict):
result = list(result.values())[0]
return result
model = SignatureModelWrapper(signature)
st.success(f"Model loaded successfully using signature: {signature_key}!")
return model
else:
raise Exception("No signatures found in the model")
except Exception as e2:
st.warning(f"Attempt 2 failed: {e2}")
# Approach 3: Creation of an alternative model
st.info("Attempt 3: Creating an alternative U-Net model...")
try:
# Create a simple U-Net model as a fallback
def create_unet_model(input_shape=(512, 512, 1)):
inputs = tf.keras.layers.Input(shape=input_shape)
# Encoder
c1 = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
c1 = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(c1)
p1 = tf.keras.layers.MaxPooling2D((2, 2))(c1)
c2 = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(p1)
c2 = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(c2)
p2 = tf.keras.layers.MaxPooling2D((2, 2))(c2)
c3 = tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(p2)
c3 = tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(c3)
p3 = tf.keras.layers.MaxPooling2D((2, 2))(c3)
c4 = tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(p3)
c4 = tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(c4)
p4 = tf.keras.layers.MaxPooling2D((2, 2))(c4)
# Bottleneck
c5 = tf.keras.layers.Conv2D(1024, (3, 3), activation='relu', padding='same')(p4)
c5 = tf.keras.layers.Conv2D(1024, (3, 3), activation='relu', padding='same')(c5)
# Decoder
u6 = tf.keras.layers.Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(c5)
u6 = tf.keras.layers.concatenate([u6, c4])
c6 = tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(u6)
c6 = tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same')(c6)
u7 = tf.keras.layers.Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(c6)
u7 = tf.keras.layers.concatenate([u7, c3])
c7 = tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(u7)
c7 = tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(c7)
u8 = tf.keras.layers.Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c7)
u8 = tf.keras.layers.concatenate([u8, c2])
c8 = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(u8)
c8 = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(c8)
u9 = tf.keras.layers.Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c8)
u9 = tf.keras.layers.concatenate([u9, c1])
c9 = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(u9)
c9 = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(c9)
outputs = tf.keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(c9)
model = tf.keras.models.Model(inputs=[inputs], outputs=[outputs])
return model
# Create the alternative model
alt_model = create_unet_model()
# Initialize with random weights (it won't be accurate but it will be functional)
st.warning("WARNING: Using an alternative U-Net model with random weights.")
st.warning("This model will not produce accurate results but serves to test the interface.")
return alt_model
except Exception as e3:
st.error("All loading attempts have failed.")
st.error("Errors encountered:")
st.error(f"1. tf.compat.v1: {e1}")
st.error(f"2. Signature inspection: {e2}")
st.error(f"3. Alternative model: {e3}")
st.info("Recommended solutions:")
st.info("1. Use an environment with TensorFlow 2.5 or compatible versions")
st.info("2. Look for an updated version of the model")
st.info("3. Contact the author for a version compatible with Keras 3")
return None
# --- Helper Functions (unchanged) ---
def load_image(image_file):
"""Loads an image from a file path or an uploaded file object."""
img = Image.open(image_file)
return img
def convert_one_channel(img_array):
"""Ensures the image is single-channel (grayscale)."""
if len(img_array.shape) > 2 and img_array.shape[2] > 1:
img_array = cv2.cvtColor(img_array, cv2.COLOR_BGR2GRAY)
return img_array
def convert_rgb(img_array):
"""Ensures the image is 3-channel (RGB) for drawing contours."""
if len(img_array.shape) == 2:
img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
return img_array
# --- Streamlit App Layout ---
st.set_page_config(layout="wide")
st.header("Segmentation of Teeth in Panoramic X-rays with U-Net")
link = 'Check out our Repo on Github! [link](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)'
st.markdown(link, unsafe_allow_html=True)
# Load the model and stop the app if it fails
model = load_keras_model()
if model is None:
st.warning("The model could not be loaded. The application cannot proceed.")
st.stop()
# --- Image Selection Section (unchanged) ---
st.subheader("Upload a Panoramic X-ray or Select an Example")
# Use local paths for the example images
example_image_paths = {
"Example 1": "107.png",
"Example 2": "108.png",
"Example 3": "109.png"
}
image_file = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
st.write("---")
st.write("Or choose an example:")
cols = st.columns(len(example_image_paths))
selected_example = None
for i, (caption, path) in enumerate(example_image_paths.items()):
with cols[i]:
try:
st.image(path, caption=caption, use_container_width=True)
if st.button(f'Use {caption}'):
selected_example = path
except Exception:
st.error(f"Example image '{path}' not found. Make sure 107.png, 108.png, and 109.png are in the same directory as the script.")
if selected_example:
image_file = selected_example
# --- Processing and Prediction Section (FIXED) ---
if image_file is not None:
st.write("---")
col1, col2 = st.columns(2)
original_pil_img = load_image(image_file)
with col1:
st.image(original_pil_img, caption="Original Image", use_container_width=True)
with st.spinner("Analyzing the image and predicting segmentation..."):
original_np_img = np.array(original_pil_img)
# 1. Pre-processing for the model
img_gray = convert_one_channel(original_np_img.copy())
img_resized = cv2.resize(img_gray, (512, 512), interpolation=cv2.INTER_LANCZOS4)
img_normalized = np.float32(img_resized / 255.0)
img_input_np = np.reshape(img_normalized, (1, 512, 512, 1))
# 2. Run the prediction using the wrapper model
try:
# DO NOT convert to TensorFlow tensor - pass the numpy array directly
prediction = model.predict(img_input_np)
# Convert the result to a numpy array if it is a tensor
if hasattr(prediction, 'numpy'):
prediction = prediction.numpy()
except Exception as e:
st.error(f"Prediction failed. Error: {e}")
st.code(traceback.format_exc())
st.stop()
# 3. Post-processing of the prediction mask
# Handle the case where prediction might have different dimensions
if len(prediction.shape) == 4:
predicted_mask = prediction[0] # Batch dimension
else:
predicted_mask = prediction
# If the mask has more than 2 dimensions, take the first channel
if len(predicted_mask.shape) > 2:
predicted_mask = predicted_mask[:, :, 0]
# Resize the mask to the original image dimensions
resized_mask = cv2.resize(predicted_mask,
(original_np_img.shape[1], original_np_img.shape[0]),
interpolation=cv2.INTER_LANCZOS4)
# Binarize the mask with Otsu's threshold for a clean result
mask_8bit = (resized_mask * 255).astype(np.uint8)
_, final_mask = cv2.threshold(mask_8bit, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Clean the mask with morphological operations to remove noise
kernel = np.ones((5, 5), dtype=np.uint8)
final_mask = cv2.morphologyEx(final_mask, cv2.MORPH_OPEN, kernel, iterations=2)
final_mask = cv2.morphologyEx(final_mask, cv2.MORPH_CLOSE, kernel, iterations=2)
# Find contours on the final mask
contours, _ = cv2.findContours(final_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw the contours on a color version of the original image
img_for_drawing = convert_rgb(original_np_img.copy())
output_image = cv2.drawContours(img_for_drawing, contours, -1, (255, 0, 0), 3) # Red contours
with col2:
st.image(output_image, caption="Image with Segmented Teeth", use_container_width=True)
st.success("Prediction complete!") |