SeedOfEvil commited on
Commit
71db8d7
·
verified ·
1 Parent(s): 64daf00

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -10
app.py CHANGED
@@ -4,32 +4,31 @@ from diffusers import AutoencoderKLWan, WanPipeline
4
  from diffusers.utils import export_to_video
5
  import spaces # ZeroGPU integration
6
 
7
- @spaces.GPU # This decorator requests a GPU when the function is called (ZeroGPU config)
8
  def generate_video(prompt, negative_prompt=""):
9
  model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
10
 
11
- # Load the VAE and pipeline with proper data types per model requirements
12
  vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
13
- # With accelerate installed, low_cpu_mem_usage can now be enabled automatically.
14
  pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
15
  pipe.to("cuda")
16
 
17
- # Generate video frames at 480p resolution (480x832) with the desired settings
18
  output = pipe(
19
  prompt=prompt,
20
  negative_prompt=negative_prompt,
21
  height=480, # 480p height
22
- width=832, # width set to match 480p (adjust as needed)
23
- num_frames=81, # Number of frames (adjust for desired video length)
24
- guidance_scale=5.0 # Recommended for the 1.3B model
25
  ).frames[0]
26
 
27
- # Save the generated frames as a video file
28
  video_path = "output.mp4"
29
  export_to_video(output, video_path, fps=15)
30
  return video_path
31
 
32
- # Create a Gradio interface for the video generation
33
  iface = gr.Interface(
34
  fn=generate_video,
35
  inputs=[
@@ -42,4 +41,4 @@ iface = gr.Interface(
42
  )
43
 
44
  if __name__ == "__main__":
45
- iface.launch()
 
4
  from diffusers.utils import export_to_video
5
  import spaces # ZeroGPU integration
6
 
7
+ @spaces.GPU # Request a GPU via ZeroGPU
8
  def generate_video(prompt, negative_prompt=""):
9
  model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
10
 
11
+ # Load the VAE and pipeline with proper data types
12
  vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
 
13
  pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
14
  pipe.to("cuda")
15
 
16
+ # Generate video frames at 480p resolution (480x832) with desired settings
17
  output = pipe(
18
  prompt=prompt,
19
  negative_prompt=negative_prompt,
20
  height=480, # 480p height
21
+ width=832, # Suitable width for 480p
22
+ num_frames=81, # Adjust as needed for video length
23
+ guidance_scale=5.0 # Recommended for T2V-1.3B model
24
  ).frames[0]
25
 
26
+ # Export the generated frames to a video file
27
  video_path = "output.mp4"
28
  export_to_video(output, video_path, fps=15)
29
  return video_path
30
 
31
+ # Create a Gradio interface for video generation
32
  iface = gr.Interface(
33
  fn=generate_video,
34
  inputs=[
 
41
  )
42
 
43
  if __name__ == "__main__":
44
+ iface.launch()