Commit
·
5c036af
1
Parent(s):
0e28335
Add TREC classifier code and requirements
Browse files- app.py +227 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import lightning as L
|
4 |
+
import torchmetrics as tm
|
5 |
+
from tokenizers import Tokenizer
|
6 |
+
import gradio as gr
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
|
9 |
+
COARSE_LABELS = [
|
10 |
+
"ABBR (0): Abbreviation",
|
11 |
+
"ENTY (1): Entity",
|
12 |
+
"DESC (2): Description and abstract concept",
|
13 |
+
"HUM (3): Human being",
|
14 |
+
"LOC (4): Location",
|
15 |
+
"NUM (5): Numeric value",
|
16 |
+
]
|
17 |
+
|
18 |
+
FINE_LABELS = [
|
19 |
+
"ABBR (0): Abbreviation",
|
20 |
+
"ABBR (1): Expression abbreviated",
|
21 |
+
"ENTY (2): Animal",
|
22 |
+
"ENTY (3): Organ of body",
|
23 |
+
"ENTY (4): Color",
|
24 |
+
"ENTY (5): Invention, book and other creative piece",
|
25 |
+
"ENTY (6): Currency name",
|
26 |
+
"ENTY (7): Disease and medicine",
|
27 |
+
"ENTY (8): Event",
|
28 |
+
"ENTY (9): Food",
|
29 |
+
"ENTY (10): Musical instrument",
|
30 |
+
"ENTY (11): Language",
|
31 |
+
"ENTY (12): Letter like a-z",
|
32 |
+
"ENTY (13): Other entity",
|
33 |
+
"ENTY (14): Plant",
|
34 |
+
"ENTY (15): Product",
|
35 |
+
"ENTY (16): Religion",
|
36 |
+
"ENTY (17): Sport",
|
37 |
+
"ENTY (18): Element and substance",
|
38 |
+
"ENTY (19): Symbols and sign",
|
39 |
+
"ENTY (20): Techniques and method",
|
40 |
+
"ENTY (21): Equivalent term",
|
41 |
+
"ENTY (22): Vehicle",
|
42 |
+
"ENTY (23): Word with a special property",
|
43 |
+
"DESC (24): Definition of something",
|
44 |
+
"DESC (25): Description of something",
|
45 |
+
"DESC (26): Manner of an action",
|
46 |
+
"DESC (27): Reason",
|
47 |
+
"HUM (28): Group or organization of persons",
|
48 |
+
"HUM (29): Individual",
|
49 |
+
"HUM (30): Title of a person",
|
50 |
+
"HUM (31): Description of a person",
|
51 |
+
"LOC (32): City",
|
52 |
+
"LOC (33): Country",
|
53 |
+
"LOC (34): Mountain",
|
54 |
+
"LOC (35): Other location",
|
55 |
+
"LOC (36): State",
|
56 |
+
"NUM (37): Postcode or other code",
|
57 |
+
"NUM (38): Number of something",
|
58 |
+
"NUM (39): Date",
|
59 |
+
"NUM (40): Distance, linear measure",
|
60 |
+
"NUM (41): Price",
|
61 |
+
"NUM (42): Order, rank",
|
62 |
+
"NUM (43): Other number",
|
63 |
+
"NUM (44): Lasting time of something",
|
64 |
+
"NUM (45): Percent, fraction",
|
65 |
+
"NUM (46): Speed",
|
66 |
+
"NUM (47): Temperature",
|
67 |
+
"NUM (48): Size, area and volume",
|
68 |
+
"NUM (49): Weight",
|
69 |
+
]
|
70 |
+
|
71 |
+
|
72 |
+
class Classifier:
|
73 |
+
def __init__(self, tokenizer_ckpt_path, model_ckpt_path):
|
74 |
+
self.tokenizer = Tokenizer.from_file(tokenizer_ckpt_path)
|
75 |
+
self.model = LSTMWithAttentionClassifier.load_from_checkpoint(
|
76 |
+
model_ckpt_path,
|
77 |
+
map_location="cpu",
|
78 |
+
)
|
79 |
+
|
80 |
+
def predict(self, text):
|
81 |
+
encoding = self.tokenizer.encode(text)
|
82 |
+
ids = torch.tensor([encoding.ids])
|
83 |
+
logits, _ = self.model(ids)
|
84 |
+
probs = torch.softmax(logits, dim=1).squeeze().tolist()
|
85 |
+
return {
|
86 |
+
category: prob
|
87 |
+
for category, prob in zip(
|
88 |
+
FINE_LABELS if self.model.fine else COARSE_LABELS, probs
|
89 |
+
)
|
90 |
+
}
|
91 |
+
|
92 |
+
|
93 |
+
class Attention(nn.Module):
|
94 |
+
def __init__(self, hidden_dim):
|
95 |
+
super().__init__()
|
96 |
+
self.WQuery = nn.Linear(hidden_dim, hidden_dim)
|
97 |
+
self.WKey = nn.Linear(hidden_dim, hidden_dim)
|
98 |
+
self.WValue = nn.Linear(hidden_dim, 1)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
query = torch.tanh(self.WQuery(x))
|
102 |
+
key = torch.tanh(self.WKey(x))
|
103 |
+
|
104 |
+
attention_weights = torch.softmax(self.WValue(query + key), dim=1)
|
105 |
+
|
106 |
+
return (attention_weights * x).sum(dim=1), attention_weights
|
107 |
+
|
108 |
+
|
109 |
+
class LSTMWithAttentionClassifier(L.LightningModule):
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
vocab_size,
|
113 |
+
embedding_dim,
|
114 |
+
hidden_dim,
|
115 |
+
num_classes,
|
116 |
+
lr=1e-3,
|
117 |
+
weight_decay=1e-2,
|
118 |
+
num_layers=1,
|
119 |
+
bidirectional=False,
|
120 |
+
dropout=0.0,
|
121 |
+
padding_idx=3,
|
122 |
+
fine=False,
|
123 |
+
**kwargs,
|
124 |
+
):
|
125 |
+
super().__init__()
|
126 |
+
self.save_hyperparameters()
|
127 |
+
self.lr = lr
|
128 |
+
self.weight_decay = weight_decay
|
129 |
+
self.fine = fine
|
130 |
+
|
131 |
+
self.embedding = nn.Embedding(
|
132 |
+
vocab_size,
|
133 |
+
embedding_dim,
|
134 |
+
padding_idx=padding_idx,
|
135 |
+
)
|
136 |
+
self.lstm = nn.LSTM(
|
137 |
+
embedding_dim,
|
138 |
+
hidden_dim,
|
139 |
+
num_layers=num_layers,
|
140 |
+
batch_first=True,
|
141 |
+
bidirectional=bidirectional,
|
142 |
+
dropout=dropout,
|
143 |
+
)
|
144 |
+
self.attention = Attention(
|
145 |
+
hidden_dim * (1 + bidirectional),
|
146 |
+
)
|
147 |
+
self.fc = nn.Linear(
|
148 |
+
hidden_dim * (1 + bidirectional),
|
149 |
+
num_classes,
|
150 |
+
)
|
151 |
+
|
152 |
+
self.criteria = nn.CrossEntropyLoss()
|
153 |
+
self.accuracy = tm.Accuracy(
|
154 |
+
task="multiclass",
|
155 |
+
num_classes=num_classes,
|
156 |
+
)
|
157 |
+
|
158 |
+
def forward(self, input_ids):
|
159 |
+
x = self.embedding(input_ids)
|
160 |
+
x, _ = self.lstm(x)
|
161 |
+
x, attention_weights = self.attention(x)
|
162 |
+
x = self.fc(x)
|
163 |
+
return x, attention_weights
|
164 |
+
|
165 |
+
def training_step(self, batch, batch_idx):
|
166 |
+
input_ids = batch["input_ids"]
|
167 |
+
coarse = batch["coarse"]
|
168 |
+
fine = batch["fine"]
|
169 |
+
logits, _ = self(input_ids)
|
170 |
+
loss = self.criteria(logits, fine if self.fine else coarse)
|
171 |
+
self.log("train_loss", loss)
|
172 |
+
return loss
|
173 |
+
|
174 |
+
def validation_step(self, batch, batch_idx):
|
175 |
+
input_ids = batch["input_ids"]
|
176 |
+
coarse = batch["coarse"]
|
177 |
+
fine = batch["fine"]
|
178 |
+
logits, _ = self(input_ids)
|
179 |
+
loss = self.criteria(logits, fine if self.fine else coarse)
|
180 |
+
self.log("val_loss", loss)
|
181 |
+
pred = logits.argmax(dim=1)
|
182 |
+
self.accuracy(pred, fine if self.fine else coarse)
|
183 |
+
self.log("val_acc", self.accuracy, prog_bar=True)
|
184 |
+
|
185 |
+
def configure_optimizers(self):
|
186 |
+
return torch.optim.AdamW(
|
187 |
+
self.parameters(),
|
188 |
+
lr=self.lr,
|
189 |
+
weight_decay=self.weight_decay,
|
190 |
+
)
|
191 |
+
|
192 |
+
|
193 |
+
tokenizer_ckpt_path = hf_hub_download(
|
194 |
+
repo_id="SatwikKambham/trec-classifier",
|
195 |
+
filename="tokenizer.json",
|
196 |
+
)
|
197 |
+
model_ckpt_path = hf_hub_download(
|
198 |
+
repo_id="SatwikKambham/trec-classifier",
|
199 |
+
filename="lstm_attention.ckpt",
|
200 |
+
)
|
201 |
+
classifier = Classifier(tokenizer_ckpt_path, model_ckpt_path)
|
202 |
+
interface = gr.Interface(
|
203 |
+
fn=classifier.predict,
|
204 |
+
inputs=gr.components.Textbox(
|
205 |
+
label="Question",
|
206 |
+
placeholder="Enter a question here...",
|
207 |
+
),
|
208 |
+
outputs=gr.components.Label(
|
209 |
+
label="Predicted class",
|
210 |
+
num_top_classes=3,
|
211 |
+
),
|
212 |
+
examples=[
|
213 |
+
[
|
214 |
+
"What does LOL mean?",
|
215 |
+
],
|
216 |
+
[
|
217 |
+
"What is the meaning of life?",
|
218 |
+
],
|
219 |
+
[
|
220 |
+
"How long does it take for light from the sun to reach the earth?",
|
221 |
+
],
|
222 |
+
[
|
223 |
+
"When is friendship day?",
|
224 |
+
],
|
225 |
+
],
|
226 |
+
)
|
227 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
tokenizers
|
3 |
+
lightning
|
4 |
+
torchmetrics
|
5 |
+
huggingface_hub
|