from datetime import datetime from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_parse import LlamaParse from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI import os from dotenv import load_dotenv import gradio as gr import markdowm as md import base64 # Load environment variables load_dotenv() llm_models = [ "mistralai/Mixtral-8x7B-Instruct-v0.1", "meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2", "tiiuae/falcon-7b-instruct", ] embed_models = [ "BAAI/bge-small-en-v1.5", "NeuML/pubmedbert-base-embeddings", "BAAI/llm-embedder", "BAAI/bge-large-en" ] # Global state selected_llm_model_name = llm_models[0] selected_embed_model_name = embed_models[0] vector_index = None # Parser setup parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown') file_extractor = {ext: parser for ext in ['.pdf', '.docx', '.doc', '.txt', '.csv', '.xlsx', '.pptx', '.html', '.jpg', '.jpeg', '.png', '.webp', '.svg']} def load_files(file_path: str, embed_model_name: str): global vector_index try: document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data() embed_model = HuggingFaceEmbedding(model_name=embed_model_name) vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model) filename = os.path.basename(file_path) return f"Ready to give response on {filename}" except Exception as e: return f"An error occurred: {e}" def set_llm_model(selected_model): global selected_llm_model_name selected_llm_model_name = selected_model return f"Model set to: {selected_model}" def respond(message, history): try: llm = HuggingFaceInferenceAPI( model_name=selected_llm_model_name, contextWindow=8192, maxTokens=1024, temperature=0.3, topP=0.9, frequencyPenalty=0.5, presencePenalty=0.5, token=os.getenv("TOKEN") ) if vector_index is not None: query_engine = vector_index.as_query_engine(llm=llm) bot_message = str(query_engine.query(message)) history.append((message, bot_message)) print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {bot_message}\n") return bot_message, history else: return "Please upload a file first.", history except Exception as e: return f"An error occurred: {e}", history def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') # Encoded logos github_logo_encoded = encode_image("Images/github-logo.png") linkedin_logo_encoded = encode_image("Images/linkedin-logo.png") website_logo_encoded = encode_image("Images/ai-logo.png") # Markdown placeholders description = "### Welcome to **DocBot** - Ask Questions Based on Your Uploaded Documents" guide = "> Step 1: Upload\n> Step 2: Select Embedding\n> Step 3: Select LLM\n> Step 4: Ask Questions" footer = """