from datetime import datetime from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_parse import LlamaParse from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI import os from dotenv import load_dotenv import gradio as gr import markdowm as md import base64 # Load environment variables load_dotenv() llm_models = [ "mistralai/Mixtral-8x7B-Instruct-v0.1", "meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2", "tiiuae/falcon-7b-instruct", ] embed_models = [ "BAAI/bge-small-en-v1.5", "NeuML/pubmedbert-base-embeddings", "BAAI/llm-embedder", "BAAI/bge-large-en" ] # Global variables selected_llm_model_name = llm_models[0] selected_embed_model_name = embed_models[0] vector_index = None # Initialize the parser parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown') file_extractor = { '.pdf': parser, '.docx': parser, '.doc': parser, '.txt': parser, '.csv': parser, '.xlsx': parser, '.pptx': parser, '.html': parser, '.jpg': parser, '.jpeg': parser, '.png': parser, '.webp': parser, '.svg': parser, } def load_files(file_path: str, embed_model_name: str): try: global vector_index document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data() embed_model = HuggingFaceEmbedding(model_name=embed_model_name) vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model) print(f"Parsing done for {file_path}") filename = os.path.basename(file_path) return f"Ready to give response on {filename}" except Exception as e: return f"An error occurred: {e}" def set_llm_model(selected_model): global selected_llm_model_name selected_llm_model_name = selected_model return f"Model set to: {selected_model}" def respond(message, history): try: llm = HuggingFaceInferenceAPI( model_name=selected_llm_model_name, contextWindow=8192, maxTokens=1024, temperature=0.3, topP=0.9, frequencyPenalty=0.5, presencePenalty=0.5, token=os.getenv("TOKEN") ) if vector_index is not None: query_engine = vector_index.as_query_engine(llm=llm) bot_message = query_engine.query(message) print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n") return f"{selected_llm_model_name}:\n{str(bot_message)}" else: return "Please upload a file." except Exception as e: return f"An error occurred: {e}" def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') github_logo_encoded = encode_image("Images/github-logo.png") linkedin_logo_encoded = encode_image("Images/linkedin-logo.png") website_logo_encoded = encode_image("Images/ai-logo.png") with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo: gr.Markdown("# DocBot") with gr.Tabs(): with gr.TabItem("Intro"): gr.Markdown(md.description) with gr.TabItem("DocBot"): with gr.Accordion("=== IMPORTANT: READ ME FIRST ===", open=False): guid = gr.Markdown(md.guide) with gr.Row(): with gr.Column(scale=1): file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document") embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True) with gr.Row(): btn = gr.Button("Submit", variant='primary') clear = gr.ClearButton() output = gr.Text(label='Vector Index') llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True) model_selected_output = gr.Text(label="Model selected") # FIXED OUTPUT COMPONENT with gr.Column(scale=3): gr.ChatInterface( fn=respond, chatbot=gr.Chatbot(height=500), theme="soft", textbox=gr.Textbox(placeholder="Step-4: Ask me questions on the uploaded document!", container=False) ) gr.HTML(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded)) # Event bindings llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown, outputs=model_selected_output) btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output) clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output]) if __name__ == "__main__": demo.launch(share=True)