Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
import gradio as gr
|
9 |
-
import
|
10 |
import base64
|
11 |
|
12 |
# Load environment variables
|
@@ -26,36 +26,21 @@ embed_models = [
|
|
26 |
"BAAI/bge-large-en"
|
27 |
]
|
28 |
|
29 |
-
# Global
|
30 |
selected_llm_model_name = llm_models[0]
|
31 |
selected_embed_model_name = embed_models[0]
|
32 |
vector_index = None
|
33 |
|
34 |
-
#
|
35 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
36 |
-
file_extractor = {
|
37 |
-
'.pdf': parser,
|
38 |
-
'.docx': parser,
|
39 |
-
'.doc': parser,
|
40 |
-
'.txt': parser,
|
41 |
-
'.csv': parser,
|
42 |
-
'.xlsx': parser,
|
43 |
-
'.pptx': parser,
|
44 |
-
'.html': parser,
|
45 |
-
'.jpg': parser,
|
46 |
-
'.jpeg': parser,
|
47 |
-
'.png': parser,
|
48 |
-
'.webp': parser,
|
49 |
-
'.svg': parser,
|
50 |
-
}
|
51 |
|
52 |
def load_files(file_path: str, embed_model_name: str):
|
|
|
53 |
try:
|
54 |
-
global vector_index
|
55 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
56 |
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
57 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
58 |
-
print(f"Parsing done for {file_path}")
|
59 |
filename = os.path.basename(file_path)
|
60 |
return f"Ready to give response on {filename}"
|
61 |
except Exception as e:
|
@@ -80,31 +65,46 @@ def respond(message, history):
|
|
80 |
)
|
81 |
if vector_index is not None:
|
82 |
query_engine = vector_index.as_query_engine(llm=llm)
|
83 |
-
bot_message = query_engine.query(message)
|
84 |
-
|
85 |
-
|
|
|
86 |
else:
|
87 |
-
return "Please upload a file."
|
88 |
except Exception as e:
|
89 |
-
return f"An error occurred: {e}"
|
90 |
|
91 |
def encode_image(image_path):
|
92 |
with open(image_path, "rb") as image_file:
|
93 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
94 |
|
|
|
95 |
github_logo_encoded = encode_image("Images/github-logo.png")
|
96 |
linkedin_logo_encoded = encode_image("Images/linkedin-logo.png")
|
97 |
website_logo_encoded = encode_image("Images/ai-logo.png")
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo:
|
100 |
gr.Markdown("# DocBot")
|
101 |
with gr.Tabs():
|
102 |
with gr.TabItem("Intro"):
|
103 |
-
gr.Markdown(
|
104 |
|
105 |
with gr.TabItem("DocBot"):
|
106 |
with gr.Accordion("=== IMPORTANT: READ ME FIRST ===", open=False):
|
107 |
-
|
|
|
108 |
with gr.Row():
|
109 |
with gr.Column(scale=1):
|
110 |
file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
|
@@ -114,20 +114,24 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]),
|
|
114 |
clear = gr.ClearButton()
|
115 |
output = gr.Text(label='Vector Index')
|
116 |
llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True)
|
117 |
-
model_selected_output = gr.Text(label="Model selected")
|
|
|
118 |
with gr.Column(scale=3):
|
119 |
-
gr.
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
131 |
|
132 |
if __name__ == "__main__":
|
133 |
-
demo.launch(share=True)
|
|
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
import gradio as gr
|
9 |
+
import markdown as md
|
10 |
import base64
|
11 |
|
12 |
# Load environment variables
|
|
|
26 |
"BAAI/bge-large-en"
|
27 |
]
|
28 |
|
29 |
+
# Global state
|
30 |
selected_llm_model_name = llm_models[0]
|
31 |
selected_embed_model_name = embed_models[0]
|
32 |
vector_index = None
|
33 |
|
34 |
+
# Parser setup
|
35 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
36 |
+
file_extractor = {ext: parser for ext in ['.pdf', '.docx', '.doc', '.txt', '.csv', '.xlsx', '.pptx', '.html', '.jpg', '.jpeg', '.png', '.webp', '.svg']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def load_files(file_path: str, embed_model_name: str):
|
39 |
+
global vector_index
|
40 |
try:
|
|
|
41 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
42 |
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
43 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
|
|
44 |
filename = os.path.basename(file_path)
|
45 |
return f"Ready to give response on {filename}"
|
46 |
except Exception as e:
|
|
|
65 |
)
|
66 |
if vector_index is not None:
|
67 |
query_engine = vector_index.as_query_engine(llm=llm)
|
68 |
+
bot_message = str(query_engine.query(message))
|
69 |
+
history.append((message, bot_message))
|
70 |
+
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {bot_message}\n")
|
71 |
+
return bot_message, history
|
72 |
else:
|
73 |
+
return "Please upload a file first.", history
|
74 |
except Exception as e:
|
75 |
+
return f"An error occurred: {e}", history
|
76 |
|
77 |
def encode_image(image_path):
|
78 |
with open(image_path, "rb") as image_file:
|
79 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
80 |
|
81 |
+
# Encoded logos
|
82 |
github_logo_encoded = encode_image("Images/github-logo.png")
|
83 |
linkedin_logo_encoded = encode_image("Images/linkedin-logo.png")
|
84 |
website_logo_encoded = encode_image("Images/ai-logo.png")
|
85 |
|
86 |
+
# Markdown placeholders
|
87 |
+
description = "### Welcome to **DocBot** - Ask Questions Based on Your Uploaded Documents"
|
88 |
+
guide = "> Step 1: Upload\n> Step 2: Select Embedding\n> Step 3: Select LLM\n> Step 4: Ask Questions"
|
89 |
+
footer = """
|
90 |
+
<center>
|
91 |
+
<a href="https://github.com" target="_blank"><img src="data:image/png;base64,{}" height="30"/></a>
|
92 |
+
<a href="https://linkedin.com" target="_blank"><img src="data:image/png;base64,{}" height="30"/></a>
|
93 |
+
<a href="https://yourwebsite.com" target="_blank"><img src="data:image/png;base64,{}" height="30"/></a>
|
94 |
+
</center>
|
95 |
+
""".format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded)
|
96 |
+
|
97 |
+
# Gradio UI
|
98 |
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo:
|
99 |
gr.Markdown("# DocBot")
|
100 |
with gr.Tabs():
|
101 |
with gr.TabItem("Intro"):
|
102 |
+
gr.Markdown(description)
|
103 |
|
104 |
with gr.TabItem("DocBot"):
|
105 |
with gr.Accordion("=== IMPORTANT: READ ME FIRST ===", open=False):
|
106 |
+
gr.Markdown(guide)
|
107 |
+
|
108 |
with gr.Row():
|
109 |
with gr.Column(scale=1):
|
110 |
file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
|
|
|
114 |
clear = gr.ClearButton()
|
115 |
output = gr.Text(label='Vector Index')
|
116 |
llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True)
|
117 |
+
model_selected_output = gr.Text(label="Model selected")
|
118 |
+
|
119 |
with gr.Column(scale=3):
|
120 |
+
chatbot_ui = gr.Chatbot(height=500)
|
121 |
+
message = gr.Textbox(placeholder="Step-4: Ask me questions on the uploaded document!", container=False)
|
122 |
+
submit_btn = gr.Button("Send")
|
123 |
+
|
124 |
+
# Bind logic
|
125 |
+
llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown, outputs=model_selected_output)
|
126 |
+
btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output)
|
127 |
+
clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output])
|
128 |
+
|
129 |
+
# Chat logic
|
130 |
+
state = gr.State([])
|
131 |
+
submit_btn.click(fn=respond, inputs=[message, state], outputs=[chatbot_ui, state])
|
132 |
+
message.submit(fn=respond, inputs=[message, state], outputs=[chatbot_ui, state])
|
133 |
+
|
134 |
+
gr.HTML(footer)
|
135 |
|
136 |
if __name__ == "__main__":
|
137 |
+
demo.launch(share=True)
|