Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,28 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
from deep_translator import GoogleTranslator
|
4 |
import torch
|
5 |
|
6 |
-
# Optimizaci贸n para entornos limitados
|
7 |
torch.set_num_threads(1)
|
8 |
torch.set_num_interop_threads(1)
|
9 |
|
10 |
-
|
11 |
-
tokenizer = T5Tokenizer.from_pretrained(
|
12 |
-
model = T5ForConditionalGeneration.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
# Funci贸n para generar SQL
|
15 |
def generar_sql(pregunta_espanol):
|
16 |
try:
|
17 |
pregunta_ingles = GoogleTranslator(source="es", target="en").translate(pregunta_espanol)
|
18 |
-
prompt = f"
|
19 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
20 |
output = model.generate(input_ids, max_length=128)
|
21 |
sql = tokenizer.decode(output[0], skip_special_tokens=True)
|
@@ -23,13 +30,12 @@ def generar_sql(pregunta_espanol):
|
|
23 |
except Exception as e:
|
24 |
return f"Error: {str(e)}"
|
25 |
|
26 |
-
# Interfaz Gradio
|
27 |
iface = gr.Interface(
|
28 |
fn=generar_sql,
|
29 |
inputs=gr.Textbox(lines=3, label="Pregunta en espa帽ol"),
|
30 |
outputs=gr.Textbox(label="Consulta SQL generada"),
|
31 |
-
title="Texto a SQL
|
32 |
-
description="
|
33 |
)
|
34 |
|
35 |
iface.launch()
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
import gradio as gr
|
4 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
5 |
from deep_translator import GoogleTranslator
|
6 |
import torch
|
7 |
|
|
|
8 |
torch.set_num_threads(1)
|
9 |
torch.set_num_interop_threads(1)
|
10 |
|
11 |
+
model_name = "mrm8488/t5-base-finetuned-wikiSQL"
|
12 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
13 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
14 |
+
|
15 |
+
# Tu esquema personalizado
|
16 |
+
SCHEMA = """
|
17 |
+
Tables:
|
18 |
+
bodegas(Id, Nombre, Encargado, Telefono, Email, Direccion, Horario, Regional, Latitud, Longitud)
|
19 |
+
maestra(CodigoSap, Descripcion, Grupo, Agrupador, Marca, Parte, Operacion, Componente)
|
20 |
+
"""
|
21 |
|
|
|
22 |
def generar_sql(pregunta_espanol):
|
23 |
try:
|
24 |
pregunta_ingles = GoogleTranslator(source="es", target="en").translate(pregunta_espanol)
|
25 |
+
prompt = f"{SCHEMA}\ntranslate English to SQL: {pregunta_ingles}"
|
26 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
27 |
output = model.generate(input_ids, max_length=128)
|
28 |
sql = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
30 |
except Exception as e:
|
31 |
return f"Error: {str(e)}"
|
32 |
|
|
|
33 |
iface = gr.Interface(
|
34 |
fn=generar_sql,
|
35 |
inputs=gr.Textbox(lines=3, label="Pregunta en espa帽ol"),
|
36 |
outputs=gr.Textbox(label="Consulta SQL generada"),
|
37 |
+
title="Texto a SQL con esquema personalizado",
|
38 |
+
description="Escribe una pregunta en espa帽ol y genera SQL sobre las tablas `bodegas` y `maestra`."
|
39 |
)
|
40 |
|
41 |
iface.launch()
|